Геодезическая привязка изображений от геостационарных спутников по контуру диска Земли и электронным картам

Егошкин Н.А., Еремеев В.В., Козлов Е.П., Москатиньев И.В.*, Москвитин А.Э. Рязанский государственный радиотехнический университет * ФГУП «НПО им. С.А. Лавочкина»

Общая технология геодезической привязки

Выделение контурных точек диска Земли

Структура сканового изображения

Если $B(m,n) > b_{\Pi}$, то точка (m,n) считается принадлежащей диску Земли, а если $B(m,n) \le b_{\Pi}$ то космосу.

Контурные точки определяются как линии с уровнем яркости b_{Π} из уравнения $\Re(B(m,n)) = b_{\Pi}$, где \Re – оператор яркостной интерполяции.

Коррекция навигационных параметров и формирование опорных точек местности на основе оценки параметров реального эллипса диска Земли

Оценивание параметров реально наблюдаемого эллипса

Опишем произвольный эллипс в виде уравнения: $X^2 + gXY + cY^2 + dX + eY + f = 0$ Искомые параметры: $X_{II} = (eg - 2cd)/(4c - g^2), \quad Y_{II} = (dg - 2e)/(4c - g^2),$

$$\varphi = 0.5 \operatorname{arctg} \frac{g}{1-c},$$

$$a_{\mathrm{A}}, \ b_{\mathrm{A}} = \sqrt{\frac{2(cd^2 + fg^2 + e^2 - edg - 4cf)}{(4c - g^2)\left(1 + c \pm \sqrt{(1-c)^2 + g^2}\right)}}$$

где ($X_{{f I}{f I}},Y_{{f I}{f I}}$) - координаты центра, ${m arphi}$ - угол поворота, $\,a_{{f I}{f I}},b_{{f I}{f I}}$ - полуоси эллипса

Формирование опорных точек местности $X' = [(X - X_{II}) cos \varphi + (Y - Y_{II}) sin \varphi] a / a_{II}$ $Y' = [(Y - Y_{II}) cos \varphi - (X - X_{II}) sin \varphi] b / b_{II}$ где (X',Y') и (X,Y) – одноименные точки, принадлежащие соответственно эталонному и реальному эллипсам. Коррекция навигационных параметров

$$\Delta \alpha = \operatorname{arctg} X_{\mathrm{II}} / \sqrt{X_0^2 + Y_0^2 + Z_0^2}$$

$$\Delta \omega = \operatorname{arctg} Y_{\mathrm{II}} / \sqrt{X_0^2 + Y_0^2 + Z_0^2}$$

$$\Delta \chi = \varphi$$

где $\sqrt{X_0^2 + Y_0^2 + Z_0^2}$ - центр Земли

Δα, Δω, Δφ – углы тангажа, крена и рысканья.

Формирование эталонных фрагментов электронной карты

Уникальный фрагмент

Эталонный снимок, совмещенный с картой

Бинарная маска

Идентификация одноименных фрагментов снимка и карты

Поиск однои веннаь пофратментов

Одноименные точки

Корреляционный поиск объектов карты на снимке

Коэффициент корреляции

$$\rho = \frac{BA - BA}{\sqrt{D_B D_A}}$$

С учетом бинарности маски

$$\rho = \frac{\overline{B_1} - \overline{B_0}}{\sqrt{D_B}} \cdot \frac{\sqrt{q_1 q_0}}{q_1 + q_0}$$

А, *В* и *D*_{*A*}, *D*_{*B*} - Средние яркости и оценки дисперсий, найденные по элементам маски и снимка

BA - Среднее значение произведений одноименных элементов изображения и бинарной маски

 $\overline{B_1}$,
 $\overline{B_0}$ и
 q_1 ,
 q_0 - Средние яркости и число точек под

 единичной и нулевой областями маски

Уточнение координат одноименных точек до долей пикселя

$$m_k = x_k + \alpha_0 + \delta x_k, \quad n_k = y_k + \beta_0 + \delta y_k$$

Отбраковка ОТМ

Критерий, основанный на статистических характеристиках водной и земной поверхности:

 $\overline{B_0} > \overline{B_1}$ или $D_0 > D_1$

Критерий, основанный на анализе коэффициента корреляции:

$$\rho_{\max} < \rho_0$$
или $\rho_{\max} / \rho^*_{\max} < p$ или $\sigma_{\rho} < \sigma^*_{\rho}$

Критерий, основанный на подсчете облачности под нулевой маской:

$$q_{\hat{i}\hat{a}\ddot{e},0}/q_0 > K_{\hat{i}\hat{a}\ddot{e}}$$

Определение соответствия снимка и карты $O=\{(x_k, y_k), (m_k, n_k); k=\overline{1, K}\}$ - множество одноименных точек

Полиномы геометрического соответствия снимка и эталона:

$$P_{y}(m_{k},n_{k}) = \sum_{i=0}^{p} \sum_{j=0}^{i} b_{j,i-j} m_{k}^{j} n_{k}^{i-j}$$
$$P_{x}(m_{k},n_{k}) = \sum_{i=0}^{p} \sum_{j=0}^{i} a_{j,i-j} m_{k}^{j} n_{k}^{i-j}$$

где $k = \overline{0, K}$; р - степень полиномов; $a_{j,i-j} \, \check{c} \, b_{j,i-j}, \, i = \overline{0, p}, \, j = \overline{0, i}, \, -$ подлежащие определению параметры геометрического соответствия снимка и эталона, которые определяются по МНК из условий: $\sum_{k} (P_m(m_k, n_k) - m_k)^2 = min \qquad \sum_{k} (P_n(m_k, n_k) - n_k)^2 = min$

Определение геометрического соответствия снимка и карты по одноименным точкам

НорМаски сарваенизе бузажераже, некез коевцеенщеен консартсейртой

Повышение точности и надежности совмещения за счет устранения систематических ошибок совмещения фрагментов

Иллюстрация несовпадения береговой линии изображения и карты

	Исходные значения					Скорректированные значения			
Номер фрагмента	М(<u>р</u>)	Μ(ΔΧ)	$M(\Delta Y)$	σ(ΔΧ)	σ(ΔΥ)	Μ(ΔΧ)	$M(\Delta Y)$	σ(ΔΧ)	σ(ΔΥ)
6	0,872	0,383	-0,428	0,165	0,243	0,025	-0,020	0,165	0,243
8	0,903	0,350	1,111	0,173	0,281	0,009	0,046	0,173	0,281
10	0,647	0,043	0,108	0,182	0,246	0,008	0,021	0,182	0,246
17	0,911	0,598	0,831	0,320	0,198	0,031	0,031	0,320	0,198
22	0,794	1,282	0,979	0,273	0,241	0,069	0,041	0,273	0,241
25	0,836	0,837	0,680	0,278	0,220	0,027	0,032	0,278	0,220
28	0,871	0,784	0,738	0,189	0,220	0,027	0,031	0,189	0,220
34	0,915	0,082	0,680	0,224	0,339	0,010	0,015	0,224	0,339
50	0,927	-0,263	0,548	0,148	0,130	-0,008	0,029	0,148	0,130

Устранение систематических ошибок совмещения фрагментов, вызванных несовпадением геометрии линии карты и соответствующей контурной линии снимка

Повышение точности и надежности совмещения на основе кластеризации уникальных фрагментов

Иллюстрация разбиения уникальных фрагментов на несколько подфрагментов

Коэффициент корреляции і-го подфрагмента

$$\rho_i = \frac{\overline{B_{1i}} - \overline{B_{0i}}}{\sqrt{D_{Bi}}} \cdot \frac{\sqrt{q_{1i} q_{0i}}}{q_{1i} + q_{0i}}, \quad i = \overline{1, I} \qquad I \to J$$

Коэффициент корреляции фрагмента

$$\rho = \frac{\overline{\sum_{j \in J} B_{1j}} \overline{\sum_{j \in J} B_{0j}}}{\sqrt{D \bigcup_{j \in J} B_{j}}} \cdot \frac{\sqrt{\sum_{j \in J} q_{1j} \sum_{j \in J} q_{0j}}}{\sum_{j \in J} \sqrt{p_{1j}} \sum_{j \in J} q_{0j}}$$

Повышение точности и надежности совмещения на основе анализа формы и ориентации эталонных фрагментов

Идентификация фрагмента линейной формы (максимум ВКФ = 0.91, ошибка > 10 пикс)

Фрагмент изображения

Срез АКФ вдоль оси х

Срез АКФ вдоль оси z1

Контурный график АКФ 🔒

Срез АКФ вдоль оси у

Срез АКФ1 вдоль оси z2

Корреляционно-экстремальная идентификация космических изображений с учетом ориентации фрагментов

Параметры геометрического соответствия снимка и эталона с учетом ориентации фрагментов

 $\sum_{k} (K1_{k} \Delta z1_{k}^{2} + K2_{k} \Delta z2_{k}^{2}) = min,$ где $K1_{k}, K2_{k}$ - весовые коэффициенты вдоль осей z1 и z2, $\Delta z1_{k} = cos(\alpha_{k}) \cdot (P_{x}(x_{k}, y_{k}) - x_{k}) - sin(\alpha_{k}) \cdot (P_{y}(x_{k}, y_{k}) - y_{k}),$ $\Delta z2_{k} = sin(\alpha_{k}) \cdot (P_{x}(x_{k}, y_{k}) - x_{k}) + cos(\alpha_{k}) \cdot (P_{y}(x_{k}, y_{k}) - y_{k})$ где $\alpha_{k}, k = \overline{0, K}$, - угол между осями планарной системой координат снимка и

осями ориентации эталонного фрагмента. Уточнение координат максимума до долей пикселя проводится с учетом формы

Вычисление ориентации фрагмента и весовых коэффициентов

Для АКФ применятся метод главных компонент, который позволяет перейти к ортогональным некоррелированным координатам

меры сходства

$$\begin{vmatrix} Z1\\Z2 \end{vmatrix} = \begin{vmatrix} e_{11} & e_{12}\\e_{21} & e_{22} \end{vmatrix} \cdot \begin{vmatrix} X\\Y \end{vmatrix}$$

где X, ΔY и Z1, Z2 – массивы координат точек АКФ в планарных координатах снимка и в координатах, соответствующих осям пространственной ориентации фрагмента; e_{ij} - элемент *i*-го собственного вектора, соответствующего собственному значению λ_i , *i*, *j* = 1, 2; ($K1_k = \lambda_1$) \geq ($K2_k = \lambda_2$)

Углы находятся по МНК из условий

 $\sum (X \cdot sin(\alpha_k) + Y \cdot cos(\alpha_k) - Z1)^2 = min, \qquad \sum (X \cdot cos(\alpha_k) - Y \cdot sin(\alpha_k) - Z2)^2 = min.$

Исходные данные	Вычислительные средства						
 >Снимки со спутников «MeteoSat-5» и «MeteoSat-8»; >Модельные изображения, созданные с помощью модели съемки КА «Электро-Л». 	 ➢Intel Xeon 7120N 4x3.0 GHz / 667 MHz: 4 двуядерных процессора; 8 Гб оперативной памяти. 						
Результаты обработки:							
 Результаты привязки по диску: Время решения задачи для потока данных в 1.5 Гб < 10 сек.; Точность оценивания углов крена и тангажа до 3 угл. с. и смещения диска Земли порядка 0.5 пикс.; Точность оценивания угла рыскания порядка 200 угл. с.; Указанные точности оценки параметров геодезической привязки обеспечиваются даже при 80 % затенении диска Земли. Результаты привязки по картам: Время решения задачи для потока данных в 1.5 Гб < 5 сек.; СКО геодезической привязки составляет порядка 0.3 - 0.5 пикселей; Погрешность геодезической привязки центральной точки диска Земли не превышает 0.7 пикселя; при более чем 50%-м затенении диска Земли погрешность оценки его смещения возрастает и уже при 70% -м затенении становится недопустимо большой Общее время решения задачи для потока данных в 1.5 Гб < 15 сек.; Точность геодезической привязки центральной точки диска Земли не превышает 0.7 пикселя; при более чем 50%-м затенении диска Земли погрешность оценки его смещения возрастает и уже при 70% -м затенении становится недопустимо большой Общее время решения задачи для потока данных в 1.5 Гб < 15 сек.; Точность геодезической привязки по контуру диска Земли и ЭК составляет порядка 0.5 - 0.7 пикселей изображения.							