Алгоритм использования информации, получаемой при сканировании вдоль трассы полета, для атмосферной коррекции данных спутникового сканера цвета

С.В.Шеберстов, О.В.Копелевич, С.В.Вазюля

Институт океанологии им. П.П.Ширшова РАН

Многозональное сканирующее устройство МСУ-О, разрабатываемое в ФГУП «РНИИ КП» для космического аппарата «Метеор-М» №3 в рамках программы «РОСС-1

Орбита солнечно-синхронная нисходящая круговая, Высота – 832 км,

Наклонение – 98.068°,

Период – 101.3 мин,

Время пересечения экватора (местное) – 10:00.

Спектральные каналы трассовой съемки 412, 443, 490, 510, 555, 670, 745, 865 Спектральные каналы угловой съемки 443, 555, 865 Полоса обзора 1000 км Мгновенное поле зрения, угл. мин. 2

Атмосферная коррекция

Яркость на верхней границе атмосферы:

$$L_t(\lambda) = L_R(\lambda) + L_a(\lambda) + T(\lambda)L_g + t(\lambda)L_W(\lambda)$$

 $L_{R}(\lambda)$ Вклад молекулярного (рэлеевского) рассеяния (90%) на 412 нм

 $L_a(\lambda)$ Аэрозольная яркость

$$L_g = r_g F_0(\lambda) \qquad T(\lambda) = \exp(-(\frac{1}{\mu} + \frac{1}{\mu})\tau) \\ \mu \quad \mu_0$$

$$t(\lambda) = t_R(\lambda)t_a(\lambda), \ t_{R,a} = \exp(-\tau_{R,a}\frac{1-\omega_{R,a}F_{R,a}}{\mu})$$

$$L_{w}(\lambda) = L_{wN}(\lambda)\mu_{0}t_{0}(\lambda), \quad L_{wN}(\lambda) = F_{0}(\lambda)\frac{0.165\rho(\lambda)}{1 - 0.497\rho(\lambda)}$$

Распределение концентрации хлорофилла в Атлантике по данным сканера цвета MODIS Aqua. Линзообразная область в левой части изображения – блик.

Методы устранения блика:

1)Наклон вдоль траектории (tillting) - SeaWiFS

2)Время пересечения экватора (Aqua, Terra, POCC-1)

3)Вычитание вклада блика

Яркость излучения, отраженного от взволнованной поверхности

$$r_{g} = \frac{1}{\mu} R_{Fr}(\mu_{f}, n_{w}) \frac{1 + \mu \mu_{0} - \sqrt{1 - \mu^{2}} \sqrt{1 - \mu_{0}^{2}} \cos \varphi}{(\mu + \mu_{0})^{4}} \frac{1}{\pi \sigma^{2}} \exp(\frac{2 - \mu^{2} - \mu_{0}^{2} - 2\sqrt{1 - \mu^{2}} \sqrt{1 - \mu_{0}^{2}} \cos \varphi}{\sigma^{2}}) S(\mu) S(\mu_{0})$$

 $\mu = \cos \theta$, зенитный угол сенсора

 $\mu_0 = \cos \theta_0$, зенитный угол Солнца

$$\mu_{f} = \sqrt{\frac{1 + \mu \mu_{0} - \sqrt{1 - \mu^{2}} \sqrt{1 - \mu_{0}^{2}} \cos \varphi}{2}}$$
$$S(\mu) = \frac{1}{1 + f}, \ f = \frac{1}{2} \left(\frac{\exp(-v^{2})}{\sqrt{\pi}v} - \operatorname{erfc}(v) \right), \ v = \frac{\operatorname{ctg}(\theta)}{\sigma}$$

 $\sigma = \sqrt{0.0054U_w}$

T.Nakajima, M.Tanaka, J.Quant.Spectroc. Radiat. Transfer V.29 p.521, 1983

Распределение яркости излучения, отраженного от взволнованной поверхности

. Пространственные распределения солнечного блика 22 июня для нового спутника

7

1 m/s

0.02 0.01 0.001 1and

Пространственные распределения солнечного блика 21 марта для нового спутника

1 m/s

3m/s

5m/s

🏭 simpleorb		×					
Satellite characteristics Altitude, km	832	Date Year 2006					
Period, minutes	101.3	Day 212					
Inclination	98.068	Time (GMT)					
Scan width	109.9	End 7:26:00					
Equator crossing time (local)	10	NX 300 NY 200					
Wind speed Node	Wind speed						
10 (•	Descending	Time (GMT) 7:30					
C Trajectory 0	Scan angle	Latitude 0.0					
Data file	Tilt	Longitude 37.5					
Output file D:\sheb\projects\iki2008\simpleorb\st2006_07_r Browse Parameter file Open Save							
File D:\sheb\projects\iki2008\simpleorb\st2006_07_plus.txt has been writter							
OK Exit							

Траектория подспутниковой точки и точек наблюдения для углов +35 и -35°

Двухпараметрическая модель аэрозоля

$$L_{a}(\theta_{0}, \theta, \varphi) = C_{af} L_{a-f}(\theta_{0}, \theta, \varphi) + C_{ac} L_{ac}(\theta_{0}, \theta, \varphi)$$

где $L_{a-f}(\theta_o, \theta, \varphi)$ и $L_{a_c}(\theta_o, \theta, \varphi)$ – спектральные значения аэрозольной яркости для мелкой и крупной фракций аэрозоля, соответственно, а Ca_f и Ca_c – коэффициенты разложения.

Полученные по данным SeaWiFS и измерений плавающим

спектрорадиометром значения аппроксимировались вышеприведенной формулой. Наибольшие ошибки аппроксимации получаются для длины волны 412 нм, но и в этом канале они не превышают значения 0.08. Средняя по спектру относительная ошибка аппроксимации для 3-х станций не превышала 5%, а для станции 11 (1 авг. 2006 - точка 2) составила 8%.

Полученные коэффициенты разложения $Ca_f u C_{ac}$ были использованы для оценки вклада аэрозольной яркости ρ_a в яркость, измеряемую новым сканером на верхней границе атмосферы при сканировании вдоль орбиты.

Таблица 3.1. Изменения коэффициента аэрозольной яркости *ρ_a(λ)* и яркости блика *Tρ_g(λ)* для скоростей ветра 5 и 10 м/с при сканировании вдоль трассы для нового спутника. Расчет проведен для ст.2, 2006 (координаты 43,88°с.ш., 50°в.д.)

λ, нм	412	443	490	510	555	670	765	865			
Угол, град	$\rho_a(\lambda)$										
-35	2,39	2,36	2,23	2,16	1,99	1,6	1,34	1,14			
-20	1,96	1,91	1,8	1,74	1,61	1,31	1,12	0,98			
0	1,77	1,73	1,64	1,59	1,5	1,29	1,15	1,03			
20	1,82	1,77	1,68	1,64	1,55	1,37	1,24	1,13			
35	2,03	1,95	1,81	1,74	1,61	1,36	1,21	1,09			
	$T \rho_g(\lambda), W = 5 \ \text{M/c}$										
-35	<0,1	<0,1	0,11	0,12	0,14	0,17	0,19	0,2			
-20	0,63	0,8	1,02	1,09	1,25	1,52	1,66	1,74			
0	0,36	0,45	0,56	0,6	0,69	0,83	0,9	0,95			
20	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1			
35	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1			
	$I \rho_g(\lambda), \ W = I U M/C$										
-35	0,43	0,55	0,72	0,78	0,9	1,12	1,23	1,3			
-20	1,19	1,5	1,91	2,06	2,35	2,86	3,12	3,28			
0	0,89	1,1	1,4	1,5	1,7	2,06	2,23	2,34			
20	0,1	0,12	0,15	0,17	0,19	0,23	0,25	0,26			
35	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1			

Как видно из Таблицы коэффициент аэрозольной яркости ρа(λ) заметно изменяется при сканировании вдоль трассы: например, для длин волн 443 и 555 нм, которые планируются для продольного сканирования, он изменяется более чем на 30% при изменении угла наблюдения от 0 до -35°. Вклад блика резко различается для разных скоростей ветра. Это позволяет надеяться на успешное решение обратной задачи.

Исходные данные: $L_t(\lambda i, \theta_k), \lambda = 443, 555, 865$ Обратная задача: min S, $S = \sum_{1 \le i \le 3} \sum_k \left(L_t(\lambda_i, \theta_k) - \hat{L}_t(\lambda_i, \theta_k) \right)^2$

Статистическое моделирование

$L_t(\lambda_i, \vartheta_k) = L^0_t(\lambda_i, \vartheta_k)(1 + N(0, \sigma))$

stat_param	wind speed	Ca_f	Ca_c	tau_a_865	rhow_443	rhow_555	rhow_865
inital	1.0	0.651	1.015	0.167	0.0114	0.0326	0.00112
average	0.3	0.644	0.919	0.156	0.0122	0.0334	0.00199
st.dev from aver	0.3	0.059	0.290	0.031	0.0038	0.0032	0.00272
st.dev from init	0.8	0.060	0.306	0.033	0.0039	0.0033	0.00285
minimum value	0.0	0.496	0.000	0.055	0.0064	0.0280	0.00000
maximum value	2.3	0.812	1.369	0.191	0.0217	0.0428	0.01082

Statistic parameters of inverse problem results with 1% random errors for input rhot values, wind speed 1 m/s

Statistic parameters of inverse problem results with 1% random errors for input rhot values, wind speed 5 m/s

stat_param	wind speed	Ca_f	Ca_c	tau_a_865	rhow_443	rhow_555	rhow_865
inital	5.0	0.651	1.015	0.167	0.0114	0.0326	0.00112
average	4.7	0.623	0.816	0.144	0.0141	0.0352	0.00368
st.dev from aver	0.4	0.070	0.343	0.038	0.0049	0.0042	0.00400
st.dev from init	0.5	0.075	0.397	0.044	0.0056	0.0049	0.00475
minimum value	3.8	0.401	0.000	0.050	0.0067	0.0284	0.00000
maximum value	5.3	0.773	1.319	0.191	0.0298	0.0479	0.01445

U_w=10 m/s, -35,-25,-15,0,15,25,35

U_w=10 m/s, 0,15,25,35

 $U_w = 10 \text{ m/s}, -35, -25, -15, 0$

U_w=5 m/s, -35, -25, -15, 0, 15, 25, 35

 $U_w = 5 \text{ m/s}, \ \theta = 0, 15, 25, 35$

U_w=5 m/s, -35, -25, -15, 0

 $U_w = 1 \text{ m/s}$

Алгоритм атмосферной коррекции 1)Проверить наличие блика 2)Найти скорость ветра 3)Использовать результаты поперечного сканирования для определения L_{wn}(λ), λ=412, 865

Выводы

 Создана программа для моделирования полей коэффициента яркости солнечного блика для продольного и поперечного сканирования

2. Разработан алгоритм атмосферной коррекции для датчика цвета океана с использованием данных сканирования вдоль траектории полета спутника

3. Исследована устойчивость предложенного алгоритма

Работа выполнена при финансовой поддержке РФФИ, грант ОФИ-Ц № 07-05-13555