

Оценка баланса солнечного излучения в мелководном море по спутниковым данным о цвете вод

Вазюля С.В., Копелевич О.В., Шеберстов С.В.

Институт океанологии им. П.П. Ширшова РАН, Нахимовский пр., 36, Москва 117997, e-mail: svershova@mail.ru; тел. (095) 129-2781.

Содержание

- 1. Введение
- 2. Три этапа проведения расчетов:
- Модифицированный алгоритм атмосферной коррекции
- Расчет оптических характеристик воды, определяющих распространение ФАР в водной толще
- Расчет компонентов баланса ФАР на поверхности и в водной толще
- 3. Примеры расчетов и сравнение с результатами измерений
- 4. Оценка влияния дна
- 5. Заключение

Оценка баланса солнечного излучения (ФАР) в системе атмосфера-океан необходима, так как излучение, поглощаемое океаном, определяет:

- создание первичной продукции фитопланктона
- формирование термической структуры и теплосодержание поверхностного слоя

Использование спутниковых данных – единственная возможность оценки пространственной и временной изменчивости утилизируемой ФАР в зависимости от различных факторов.

Главная особенность мелководного случая – отражение солнечного излучения от морского дна.

Например, знание баланса на мелководье необходимо, чтобы лучше понять механизм образования термического бара, который возникает в прибрежной области водоемов в период освобождения от ледяного покрова, либо его образования.

Расположение станций. Синим цветом обозначены номера станций в 2003 г., зеленым – в 2004 г., красным – в 2006 г. В настоящей работе рассматривается северная часть Каспийского моря, где глубины в основном меньше 15 метров.

Батиметрическая карта северной половины Каспийского моря

Два этапа обработки данных спутниковых сканеров цвета

 <u>Атмосферная коррекция</u> – определение спектральных значений яркости L_W(λ) излучения, вышедшего из водной толщи, по спектральным значениям яркости L_t(λ) восходящего излучения на верхней границе атмосферы, измеренным спутниковым датчиком:

 $\mathbf{L}_{\mathbf{t}}(\boldsymbol{\lambda}) = \mathbf{L}_{\mathbf{r}}(\boldsymbol{\lambda}) + \mathbf{L}_{\mathbf{a}}(\boldsymbol{\lambda}) + \mathbf{T}(\boldsymbol{\lambda})\mathbf{L}_{\mathbf{g}}(\boldsymbol{\lambda}) + \mathbf{t}(\boldsymbol{\lambda})\mathbf{L}_{\mathbf{wc}}(\boldsymbol{\lambda}_{\mathbf{i}}) + \mathbf{t}(\boldsymbol{\lambda})\mathbf{L}_{\mathbf{w}}(\boldsymbol{\lambda}),$

- L_r(λ) и L_a(λ) яркости, обусловленные, соответственно, рэлеевским рассеянием и многократным рассеянием аэрозолем;
- $L_{g}(\lambda)$ и $L_{wc}(\lambda)$ солнечными бликами и диффузным отражением пеной;
- T(λ) и t(λ) направленное и диффузное пропускание излучения атмосферой
- 2. <u>Расчет биооптических параметров воды</u> по спектральным значениям яркости $L_w(\lambda)$ излучения, вышедшего из водной толщи.

Алгоритм атмосферной коррекции ИОРАН

Разработанный в ИОРАН усовершенствованный алгоритм атмосферной коррекции основан на одновременном определении аэрозольного вклада $\rho_a(\lambda)$ и искомого спектрального коэффициента яркости моря $\rho_w(\lambda)$ по измеренным значениям коэффициента яркости $\rho_t(\lambda)$ восходящего излучения на верхней границе атмосферы

$$\rho_{t}(\lambda) = [\rho_{r}(\lambda) + T(\lambda) \rho_{g}(\lambda) + t(\lambda) \rho_{wc}(\lambda)] + \rho_{a}(\lambda) + t(\lambda) \rho_{w}(\lambda)$$

Используется параметризация спектральных функций $\rho_a(\lambda)$ и $\rho_w(\lambda)$ посредством нескольких базовых функций. Благодаря этому проблема сводится к нахождению нескольких весовых коэффициентов при этих базовых функциях, исходя из наилучшего соответствия измеренных и рассчитанных спектральных значений $\rho_t(\lambda)$. Спектральный коэффициент яркости моря $\rho_w(\lambda)$ представляется в виде разложения по разработанной ранее системе базовых функций $\rho_{w1}(\lambda)$, $\rho_{w2}(\lambda)$, $\rho_{w3}(\lambda)$

$$\rho_{w}(\lambda) = c_1 \rho_{w1}(\lambda) + c_2 \rho_{w2}(\lambda) + c_3 \rho_{w3}(\lambda),$$

где C_1 , C_2 , C_3 – искомые коэффициенты разложения (Kopelevich et al. 2007).

Региональный алгоритм атмосферной коррекции для мелкого моря

Буренков В.И., <u>Копелевич О.В</u>., Шеберстов С.В., Прохоренко О.В. Разработка региональных алгоритмов атмосферной коррекции данных спутниковых сканеров цвета. – доклад О.В. Копелевича на секции Е.

Обращение спектрального коэффициента яркости моря с учётом отражения от дна

 $\rho_{\rm w}(\lambda) = \rho_{\infty}(\lambda) \left[1 - \exp(-2K_{\rm d}(\lambda) H)\right] + \rho_{\rm B}(\lambda) \exp(-2K_{\rm d}(\lambda) H),$

где H – глубина, $\rho_B(\lambda)$ – спектральный коэффициент отражения ото дна, $K_d(\lambda)$ – спектральный показатель диффузного ослабления подводной облученности, $\rho_{\infty}(\lambda)$ -спектральный коэффициент яркости для бесконечно глубокого океана

 $K_d = 1.04 D_o (a + b_b), D_o = 1/\cos\theta_w$ Gordon 1989

 $\rho_{\infty} = 0.0922 \pi X / (1-X),$ Могеl, Gentili 1993 где X=b_b / (a+b_b),

а и *b_b* – показатели поглощения и рассеяния назад морской воды.

Оценка точности приближенной формулы (красная) путем сравнения с расчетами точным методом (черная)

Расчеты выполнены для оптических характеристик воды на ст.13 экспедиции 2004 г., глубина 10м. Значение альбедо дна взято для белого песка $R_B = 0.22$. Точность приближенной формулы зависит от оптических характеристик воды: для относительно чистых вод ошибка не превышает 2 %, для более мутных – увеличивается (на краях спектра) до 15 %;

Оптические свойства морской воды и дна

поглощение $a(\lambda) = a_w(\lambda) + a_g(\lambda) + a_{ph}(\lambda)$

- поглощение POB $a_g(\lambda) = a_g \exp(-S(\lambda 440))$
- поглощение пигментами $a_{ph}(\lambda) = Chl A(\lambda) \cdot Chl B(\lambda)$

рассеяние назад $b_b(\lambda) = b_{bw}(\lambda) + b_{bp}(\lambda)$

• рассеяния взвесью $b_{bp}(\lambda) = b_{bp} (\lambda/550)^{-n}$

отражение от дна $\rho_B(\lambda) = \mathbf{A} f(\lambda)$

Четыре неизвестных параметра: Chl, a_g , b_{bp} , A

Результаты обращения спектрального коэффициента яркости моря с учётом отражения от дна

Восстановленные оптические свойства морской воды

Спектральный показатель поглощения морской воды, м⁻¹

Спектральный показатель рассеяния назад морской воды, м⁻¹

Баланс на поверхности моря

$$E_{d}(0^{-}) - E_{u}(0^{-}) = E_{d}(0^{+}) - E_{ref} - E_{w}$$

- **E**_d(**0**⁻) облученность сверху непосредственно под поверхностью воды
- **E**_u(**0**-) облученность снизу непосредственно под поверхностью воды
- $E_d(0^+)$ облученность сверху над поверхностью воды
- **E**_{ref} **и E**_w облученности снизу непосредственно над поверхностью воды, создаваемые, соответственно отраженным от поверхности и вышедшим из водной толщи потоками излучения.

$$E_{d} (\lambda, 0^{+}) = \mathsf{F}_{0} (\lambda) \cos \theta t_{r}(\lambda) t_{a}(\lambda) t_{cl}(\lambda) t_{oz}(\lambda)$$

 $F_{o}(\lambda)$ - спектральная величина солнечной постоянной θ - зенитный угол солнца

 $t_r(\lambda), t_a(\lambda), t_{cl}(\lambda), t_{oz}(\lambda)$ - диффузное пропускание солнечного излучения обусловленное соответственно релеевским рассеянием, аэрозолем, облаками и озоновым слоем.

пример расчета изменения ФАР на поверхности моря по данным SeaWiFS в течение дня в сравнении с данными измерений с помощью контрольного фотометра в Баренцевом море, август 1998 (Ершова и др. 2001).

Облученности, создаваемые отраженным от поверхности и вышедшим из водной толщи потоками излучения.

 $E_{ref} = (1-p) \cdot [r_{diff} \cdot E_{diff} + r_{dir} \cdot E_{dir}] + p \cdot r_{wcap} \cdot (E_{dir} + E_{diff}),$

где \mathbf{r}_{diff} , \mathbf{r}_{dir} коэффициенты отражения для прямой и диффузной компонент нисходящего излучения \mathbf{E}_{dir} и \mathbf{E}_{dif} , \mathbf{r}_{wcap} коэффициент отражения пены, а **p** доля поверхности занятая пеной. \mathbf{r}_{dir} , \mathbf{r}_{dif} , \mathbf{r}_{wcap} и **p** зависят от скорости ветра.

В предположении изотропности:

$$E_{w}(\lambda) = \pi L_{w}(\lambda),$$

где $\mathbf{L}_{\mathbf{w}}(\boldsymbol{\lambda})$ яркость вышедшего из воды излучения.

Величина $\mathbf{L}_{\mathbf{w}}(\lambda)$ рассчитывается в зависимости от высоты Солнца и диффузного пропускания атмосферы для солнечного излучения $t(\lambda)$:

 $L_{W}(\lambda) = L_{WN}(\lambda) t(\lambda) \cos\theta,$

где θ – зенитный угол Солнца, L_{WN} – нормализованная яркость, которая находится через $\rho_w(\lambda)$:

$$L_{WN}(\lambda) = F_0(\lambda) \ 0.165 \ \rho_w(\lambda) \ /(1 - 0.497 \ \rho_w(\lambda))$$

Облученности сверху и снизу непосредственно под поверхностью воды

 $E_d(0^-) = E_u(0^-) R(0^-),$

где $R(0^{-})$ коэффициент диффузного отражения водной толщи. С учетом отражения ото дна:

$$R(0^{-}) = R_{\infty} + [R_{B} - R_{\infty}] \exp(-2 K_{d} H),$$

где R_{∞} коэффициент диффузного отражения водной толщи для бесконечно глубокого океана, а $R_B(\lambda) = \rho_B(\lambda)$ - коэффициент отражения от дна. Величины R_{∞} рассчитываются через ρ_{∞} : $R_{\infty}(\lambda) = \rho_{\infty} \cdot Q/\pi$,

значения Q для зависит от длины волны, высоты Солнца и концентрации хлорофилла (Morel, Mueller, 2003).

Из уравнения

$$E_d(0^-) - E_u(0^-) = E_d(0^+) - E_{ref} - E_w$$

находим

$$E_d(0^-) = (E_d(0^+) - E_{ref} - E_w)/(1 - R(0^-))$$

Расчеты нисходящей $E_d(z)$ и восходящей $E_u(z)$ в зависимости от глубины z

 $E_{d}(z) = E_{d}(0^{-}) \exp[-K_{d} z]$

$$E_{u}(z) = R_{\infty}E_{d}(z) + (R_{B} - R_{\infty})E_{d}(z) e^{-2 \text{ Kd (H-z)}}$$

Объемное поглощение в водной толще

исходя из баланса лучистой энергии в рассматриваемом слое $\Delta z = z_2 - z_1$ $E_{abs}(\Delta z) = E_d(z_1) - E_d(z_2) + E_u(z_2) - E_u(z_1),$

где $E_d(z_1)$, $E_d(z_2)$ – величины подводной облученности сверху на горизонтах z_1 и z_2 ; $E_u(z_2)$, $E_u(z_1)$ – величины облученности снизу на этих горизонтах.

Станция 9, 31 июля 2006, H=10.5 м

Сравнение рассчитанных по данным SeaWiFS (пунктирные линии) и измеренных (сплошные) спектральных мгновенных величин $E_d(z, \lambda)$ и $E_u(z, \lambda)$ для λ =443 нм зелёным цветом, 490 нм – оранжевым, 555 нм – фиолетовым и 626 нм – синим.

Станция 27, 3 августа 2008, H=6.5 м

Сравнение рассчитанных по данным MODIS (пунктирные линии) и измеренных (сплошные) спектральных мгновенных величин $E_d(z, \lambda)$ и $E_u(z, \lambda)$ для λ =443 нм зелёным цветом, 490 нм – оранжевым, 555 нм – фиолетовым и 626 нм – синим.

Дневные экспозиции ФАР

$$\mathcal{D}AP = \int_{400}^{700} E(\lambda) d\lambda$$

Дневные экспозиции ФАР, paccчитанные по данным SeaWiFS (пунктирные линии) и по данным измерений (сплошные) для нисходящего потока излучения обозначены синим цветом, для восходящего – зелёным. Станция 9, 31 июля 2006, H=10.5 м

Объемное поглощение в в разных слоях

 $\Phi AP_{abs}(\Delta z) = \Phi AP_d(z_1) - \Phi AP_d(z_2) + \Phi AP_u(z_2) - \Phi AP_u(z_1)$

слой, м	Станция 8, H=12 м			Станция 9, H=10.5 м		
	по результатам измерений	по спутниковы м данным	различия, %	по результатам измерений	по спутниковым данным	различия, %
0 - 1	2.82	2.48	-12.2	2.65	2.70	1.9
1 – 2	1.74	1.77	1.9	1.76	1.93	9.5
2 - 3	1.25	1.32	5.6	1.36	1.43	4.8
3 - 4	0.92	1.02	10.3	1.05	1.09	2.7
4 - 5	0.72	0.80	11.5	0.87	0.85	-1.9
5 - 7	1.00	1.19	18.7	1.28	1.24	2.8
7 - 10	0.90	1.16	29.0	1.25	1.20	4.0

Объемное поглощение ФАР в разных слоях в процентах от величины ФАР на поверхности

слой, м	Станция 2, 2006, Н=60.5 м	Станция 8, 2006, H=12 м	Станция 9, 2006, H=10.5 м	Станция 27, 2008, Н=6.5 м
0 - 1	20.0	20.9	22.4	33.0
1 – 2	14.4	15.0	16.0	21.0
2 - 3	10.7	11.2	11.8	13.8
3 - 4	8.3	8.6	9.0	9.4
4 - 5	6.6	6.8	7.1	6.6
5 - 7	9.8	10.0	10.3	
7 - 10	9.6	9.8	9.9	

Влияние отражения ото дна

Влияние отражения ото дна можно наглядно продемонстрировать путем расчета в предположении H→∞.

Станция 9, 2006

Станция 27, 2008

Заключение

- Разработан алгоритм для оценки баланса солнечного излучения (ФАР) в мелководном море по спутниковым данным о цвете вод
- Но требуется его дальнейшее усовершенствование, особенно это касается уменьшения ошибок атмосферной коррекции и создания корректной региональной модели оптических свойств морской воды, а также необходимо дополнительное исследование спектрального коэффициента отражения от дна
- Для этого требуется проведение дальнейших натурных комплексных исследований в сочетании с одновременными спутниковыми наблюдениями.

Спасибо за внимание

Работа выполнена при финансовой поддержке гранта РФФИ № 07-05-00799 и Программы фундаментальных исследований №17 Президиума РАН