Зондирование атмосферы с помощью прибора SAGE III на российском МИСЗ «Метеор-ЗМ №1»

Поляков А.В., Ю.М. Тимофеев, А.М. Чайка, Я.А. Виролайнен

Научно-исследовательский Институт Физики Санкт-Петербургского государственного университета polyakov@troll.phys.spbu.ru

Основные направления работ:

- 1. Определение газового состава атмосферы и оптических свойств аэрозоля на основе измерений прозрачности
- 2. Определение интегральных микрофизических характеристик аэрозоля на основе его оптических свойств (коэффициента ослабления аэрозоля (КАО) на различных длинах волн)
- 3. Регистрация и определение свойств полярных стратосферных облаков на основе измерений КАО на различных длинах волн

прибор SAGE III

SAGE III (Stratospheric Aerosol and Gas Experiment III) [www-sage3.larc.nasa.gov] был запущен на орбиту на борту российского спутника «Meteor–3M» 10-го декабря 2001, начал поставлять данные 27-го февраля 2002 и завершил 31 декабря 2005, окончательно прекратил работу в марте 2006.

SAGE III – дифракционный спектрофотометр с ПЗС динейкой, измеряет интенсивность солнечного излучения в непрерывной спектральной области 290–1030 нм и на 1550 нм. Около 85 дискретных величин (отдельных элементов ПЗС приемника или их комбинаций) передается для наземной обработки. Большая часть каналов расположена в полосах поглощения газов, и несколько – в прозрачных областях. Выделено 9 аэрозольных каналов: 1550, 1019–1024, 869, 755, 675, 601, 520, 447–450, 384 нм.

Метод прозрачности по Солнцу (затменный метод)

Затменный метод (по Солнцу)

Преимущества:

1. Высокая относительная точность радиационных измерений (для прозрачности по Солнцу)

2. Относительно простая физика переноса радиации

3. Высокая чувствительность измерений к изменчивости газовых и аэрозольной составляющих атмосферы

4. Автокалибровка измерений (переход к прозрачностям)

5. Высокое вертикальное разрешение метода (1,5 – 2км)

Ограничения:

1. Сравнительно низкое горизонтальное разрешение метода (~300–500км)

2. Малая (~26 за сутки) частота измерений

3. Специфические условия захода или восхода Солнца – важно для ряда нестабильных газовых составляющих

Особенности затменных измерений SAGE III

- 1. За один виток орбиты, длящийся около 1 ч. 45 м. выполняется два измерения (в северном и южном полушариях).
- 2. Эти измерения выполняются на терминаторе, т.е. в момент местного захода (или, реже, восхода).
- 3. Широта измерений меняется очень медленно (2 --3 периода за год), а долгота примерно на 26° между соседними измеренияим.
- 4. Широта измерений в северном полушарии меняется в диапазоне примерно 40 -- 80°, в южном полушарии 35 -- 60°.

Пространственно-временное распределение измерений

Сочетание затменного метода и орбиты спутника приводит к тому, что измерения сосредоточены в определенных широтных поясах, и широта измерений меняется крайне медленно

Северное полушарие

Южное полушарие

Сравнение алгоритмов обработки СПбГУ и NASA

Новый алгоритм был разработан независимо для восстановления содержания газов в атмосфере и аэрозольного поглощения из данных о прозрачности, даваемых прибором SAGE III.

Этот алгоритм отличается от операционного алгоритма NASA несколькими ключевыми моментами:

- алгоритм учитывает конечные высотное и спектральное разрешение измерений путем интегрирования по спектру и высоте;
- решается нелинейная задача с использованием метода статистической регуляризации (оптимального оценивания);
- исходная информация функции пропускания (а не оптические плотности, как в алгоритме NASA);
- аэрозольное ослабление параметризуется путем оптимального разложения по собственным векторам корреляционной матрицы аэрозольного ослабления.

Эта матрица была построена путем численного моделирования на основе ансамбля моделей стратосферного и тропосферного аэрозоля (см. Timofeyev et al, 2003; Виролайнен и др., 2004).

Сравнения и валидация

- 1. Климатологические модели
- 2. CRISTA I
- 3. HALOE
- 4. POAM III
- 5. SAGE III оперативная обработка
- 6. Озонозонды
- 7. Лидар
- 8. Аэрозольные зонды
- 9. Численные 3-D модели

Сравнение профилей озона, восстановленных по данным SAGE III (СПбГУ и оперативно) и лидарных

SAGE III, event ID 314720, 07/28/02, 19:03, 46.63N, 7.21E; LIDAR, Hohenpasseberg. Distance - 312 km, 23 h

Сравнение профилей озона, восстановленных СПбГУ с данными HALOE, SAGE III (level 2) и

озонозондовыми

В сравнении использованы 45 озонозондовых профилей

Сравнение профилей озона, восстановленных СПбГУ и NASA

Ниже 45 км (за исключением высотной области 10–12 км) результаты хорошо согласуются (в пределах 5–7% и 10% для средних и среднеквадратичных отклонений)

На высотах 45–65 км различия в среднем около 20%.

Выше 65 км различия увеличиваются до 50% и более.

Средние (сплошные линии) и среднеквадратичные (пунктир) разности

200 измерений, 01-08 апреля 2003.

NASA восстановления: мезосферные – из измерений в полосе Хартли-Хюггенса, методами множественной линейной регрессии и наименьших квадратов – из измерений в полосе Шаппуи.

Сопоставление профилей NO₂ с данными HALOE

Сопоставление КАО по восстановлениям СПбГУ и NASA (level 2 data) (λ = 1021 nm)

Исходные данные для исследования аэрозоля и ПСО

Высотные профили измереннного коэффициента ослабления в данных уровня 2 представлены на 9 длинах волн (385, 448, 521, 596, 676, 754, 868, 1019, и ~1550 нм) на высотах ниже 40 км. Погрешность этих данных колеблется в зависимости от ряда различных причин от нескольких процентов до величин, превосходящих 100%. Эти данные о профилях коэффициента ослабления на 9 длинах волн мы и используем как исходные для наших исследований интегральных микрофизических параметров аэрозоля и ПСО

Рис. 23а-г. Широтно-долготные распределения площадей S (средние значения для высотного слоя 15-20 км) для различных периодов измерений:

a) 27 февраля 2002 – 30 июня 2002;

б) 2 июля 2002 – 13 октября 2002;

в) 13 октября 2002 – 22 декабря 2002;

г) 22 декабря 2002 – 1 марта 2003.

Сравнение с климатологией

На основе данных измерений приборов SAM II, SAGE I и SAGE II. Данные о среднезональных, месячных интегральных площадях стратосферного аэрозоля для периода 1979–1999 г.г. подготовлены David B. Considine, NASA Langley Research Center, USA. Данные относятся к фоновому периоду состояния стратосферного аэрозоля (1996–1999 г.г.)

Таблица Критерии выделения ПСО

Условное название	Обозна- чение	Критерии	ссылка
Ослабление на 1 мкм	1	КО на длине волны 1 мкм больше 0.0008км ⁻¹	McCormick et al., 1982
Две точки спектра 0.52 и 1мкм	2	КО на длине волны 0.52 мкм менее чем в 2 раза превосходит КО на 1 мкм	Pitts et al., 1990
Три точки спектра	3	Точки плоскости, координаты которых равны отношению КО на парах длин волн, лежат внутри заданного прямоугольника	G.S. Kent et al, 1997
Близость к линейному подпростра нству ПСО	V	Вектор спектрального КО ближе к <i>п</i> -мерному подпространству ПСО, чем к ФСА.	Настоящая работа

Сезонное распределение ПСО – количество наблюдений за месяц. Синий – северное, Красный южное полушария

Долготное распределение ПСО – количество наблюдений в 10-и градусном интервале долгот. Синий – северное, красный – южное полушария.

Статистические характеристики ПСО, выделенных различными методами. В каждой клетке таблицы приведены среднее (сверху) и СКО (внизу)

Критерий	Верх, км	Низ, км	Средняя высота, км	Т, К	S, мкм ² /см ³	V, мкм ³ /см ³	S _{NAT} , мкм ² /см ³	V _{NAT} , мкм ³ /см ³
1	21.3	19.2	19.4	191.1	4.39	4.24	0.35	1.14
	7.3	6.8	2.8	2.35	2.52	3.38	0.81	1.83
2	21.0	18.9	21.0	192.0	2.35	2.20	0.38	1.0
	7.1	6.4	2.9	2.2	2.71	3.59	0.66	1.55
3	21.1	19.1	20.9	191.6	3.01	3.03	0.45	1.18
	7.2	6.5	3.0	2.2	3.07	4.20	0.82	1.90
V	21.0	20.2	20.6	192.4	1.83	1.78	0.41	1.13
	6.7	6.4	2.6	2.2	2.16	3.14	0.57	1.31

Выводы

- Разработан оригинальный метод интерпретации измерений прозрачности SAGE III и с его помощью получены профили: озона (10– 90 км), NO₂ (10–40 км), спектральный КАО (10–35 км);
- Метод линейной регрессии применен для определения площадей и объемой аэрозольных частиц по спектральным измерениям КАО
- Выделены случаи наблюдения ПСО и получены физические и интегральные микрофизические параметры ПСО

Результаты (более 30000 измерений) можно взять на моей персональной страничке

http://troll.phys.spbu.ru/Personal_pages/Polyakov/sagedat.htm

Основные результаты опубликованы в работах

- 1) Поляков А.В., Тимофеев Ю.М. Влияние алгоритма решения обратной задачи на результаты зондирования атмосферы затменным методом (аппаратура SAGE III) // Исслед. Земли из космоса. 2004. №°5. –С. 15–20.
- 2) A.V. Polyakov, Yu.M. Timofeyev, D.V. Ionov, Ya.A. Virolainen, H.M. Steele, M.J. Newchurch Retrieval of ozone and nitrogen dioxide concentration from Stratospheric Aerosol and Gas Experiment III (SAGE III) measurement using a new algorithm // JGR. . –2005. –V110. –D06303. doi:10.1029/2004JD005060
- 3) Поляков А.В., Тимофеев Ю.М., Ионов Д.В., Стил Х., Ньючерч М. Новая интерпретация измерений прозрачности спутниковым спектрометром SAGE III // Изв. РАН, ФАО. –2005. –Т41. –№3. –С 410–422.
- 4) А.М. Чайка, Ю.М. Тимофеев, А.В. Поляков Стратосферный аэрозоль по данным измерений аппаратуры SAGE III // Исследование Земли из космоса.–2007. –№2. –С10–18
- 5) K. Hocke, N. Kampfer, D. Ruffieux, L. Froidevaux, A. Parrish, I. Boyd, T.v Clarmann, T. Steck, Yu.M. Timofeyev, A.V. Polyakov, E. Kyrola Comparison and synergy of stratospheric ozone measurements by satellite limb sounders and the ground-based microwave radiometer SOMORA // Atmos. Chem. Phys., -2007. -V. 7. -P. 4117-4131.
- 6) А.В. Поляков, А.М. Шаламянский Анализ полей озона по данным российско-американского космического эксперимента SAGE III /Физика атмосферы: Наука и образование. СПб:, СПбГУ. –2007. –С. 52–57.
- 7) А.В. Поляков, К. Рэндалл, Л. Харвей, К. Хоке Новый усовершенствованный алгоритм интерпретации затменных измерений прибором SAGE III// Исследования Земли из Космоса. –2008. –№1, –С. 31–36.
- 8) А.М. Чайка, Ю.М. Тимофеев, А.В. Поляков Интегральные микрофизические параметры фонового стратосферного аэрозоля в 2002-2005 гг.(спутниковый эксперимент с аппаратурой SAGE III) Изв. РАН, Физика Атмосферы и Океана. –2008. –Т.44. –№ 2, –С. 206–220
- 9) А.В. Поляков, Ю.М. Тимофеев, Я.А. Виролайнен Полярные стратосферные облака по данным спутниковых наблюдений прибора SAGE III // Изв РАН ФАО. –2008. –Т 44. –№4.
- 10) В.С. Косцов, А.В. Поляков, А.В. Ракитин, Д.В. Ионов Результаты определения содержания NO2 в стратосфере по данным эксперимента SAGE III // Иссл. Земли из космоса. –2008. –№5. –С. 16–28.

Благодарности:

Авторы благодарят W. Chu, Ю.А. Борисова, H.M. Steele, M.J. Newchurch и многих других российских и зарубежных коллег за полезные обсуждения и помощь в получении информации.

SAGE III data level 1B and 2 were obtained from the NASA Langley Research Center Atmospheric Sciences Data Center.

Работа выполнялась при поддержке грантов РФФИ 03–05–64626, 05-05-65305, 06-05-64909, 06-05-64987 и Министерства образования и науки РФ РНП.2.1.1.4166 и РНП.2.2.1.1.3836.

Спасибо за внимание