Физические основы и результаты применения RTметода в задачах инфракрасного зондирования подстилающей поверхности из космоса

Институт оптики атмосферы СО РАН, Томск Белов В.В., Афонин С.В., Соломатов Д.В.

ПРАКТИЧЕСКИЕ ПРИЛОЖЕНИЯ:

- •Климатология, метеорология;
- Океанология, рыболовство;
- Лесное и сельское хозяйство;
- Геология, геофизика;
- Оперативное обнаружение чрезвычайных ситуаций, прогноз пожарной опасности

Требования к точности \approx 0.5-1.5 К

Основные тезисы работы

1. Существуют простые статистические методы температурного зондирования земной поверхности из космоса, эффективно работающие в стандартных ситуациях.

2. мониторинг земной поверхности и в сложных оптико-метеорологических условиях спутниковых наблюдений (аэрозоль, полупрозрачная и перистая облачность) позволяет осуществлять RTM- подход

СПУТНИКОВЫЕ ИК-КАНАЛЫ ИЗМЕРЕНИЙ ТЕМПЕРАТУРЫ ПОДСТИЛАЮЩЕЙ ПОВЕРХНОСТИ

IFOV=1100 м

IFOV=1000 м

5

TM/ETM+ (LANDSAT)

IFOV=90 м

АТМОСФЕРНЫЕ ИСКАЖЕНИЯ СПУТНИКОВЫХ ИЗМЕРЕНИЙ ТПП

СПУТНИКОВЫЕ МЕТОДЫ ИЗМЕРЕНИЙ ТПП

1. Спектральный метод (две-три длины волны);

2. Угловой метод (два угла);

3. Метод радиационных моделей (RTM-метод).

7

Спектральный метод

 $\begin{aligned} \mathbf{T}_{S} &= \mathbf{C} + \alpha \left(\mathbf{T}_{11} + \mathbf{T}_{12} \right) / 2 + \beta \left(\mathbf{T}_{11} - \mathbf{T}_{12} \right) / 2 \\ \alpha &= \mathbf{A}_{1} + \mathbf{A}_{2} \left(\mathbf{1} - \varepsilon \right) / \varepsilon + \mathbf{A}_{3} \left(\Delta \varepsilon / \varepsilon_{2} \right) \\ \beta &= \mathbf{B}_{1} + \mathbf{B}_{2} \left(\mathbf{1} - \varepsilon \right) / \varepsilon + \mathbf{B}_{3} \left(\Delta \varepsilon / \varepsilon_{2} \right) \\ \varepsilon &= \left(\varepsilon_{11} + \varepsilon_{12} \right) / 2 \& \Delta \varepsilon = \left(\varepsilon_{11} - \varepsilon_{12} \right) / 2, \end{aligned}$

Τ_λ – измеряемые радиационные температуры,
 ε_λ – излучательная способность поверхности,
 (λ=11 & 12 µm)

коэффициенты A_K & B_K (k=1,3) зависят от зенитного угла наблюдений, температуры и влагосодержания воздуха

НЕДОСТАТКИ СПЕКТРАЛЬНОГО МЕТОДА

ПОГРЕШНОСТЬ ВОССТАНОВЛЕНИЯ ТПП ЗАВИСИТ ОТ ОШИБОК ИЗМЕРЕНИЙ δT_{λ} И $\delta T_{s} \approx 6.19 \cdot \delta T_{\lambda}$.

ОТНОСИТЕЛЬНАЯ ПОГРЕШНОСТЬ $\delta \epsilon$ ЗАДАНИЯ ϵ ДЛЯ УРОВНЯ $\delta T_s \approx 0.5 \text{ K}$ ДОЛЖНА БЫТЬ $\delta \epsilon \approx 0.5-1\%$, ДЛЯ $\Delta \epsilon = \epsilon_{11} - \epsilon_{12} \delta \Delta \epsilon \approx 0.25-0.5\%$.

АЛГОРИТМЫ РЕАЛИЗОВАНЫ ДЛЯ «СТАНДАРТНЫХ» СИТУАЦИЙ В БЕЗОБЛАЧНОЙ АТМОСФЕРЕ.

ОСУЩЕСТВЛЯЕТСЯ УЧЕТ ПОГЛОЩЕНИЯ ТЕПЛОВОГО ИЗЛУЧЕНИЯ ВОДЯНЫМ ПАРОМ, НО ОТСУТСТВУЕТ ЯВНЫЙ УЧЕТ ИСКАЖЕНИЙ, ВЫЗВАННЫХ АЭРОЗОЛЕМ И ПЕРИСТОЙ ОБЛАЧНОСТЬЮ.

УРАВНЕНИЕ ПЕРЕНОСА ИК-ИЗЛУЧЕНИЯ

АПРИОРНАЯ ИНФОРМАЦИЯ:

КЛЮЧЕВЫЕ МЕТЕОРОЛОГИЧЕСКИЕ И ОПТИЧЕСКИЕ ПАРАМЕТРЫ АТМОСФЕРЫ, ГЕОМЕТРИЯ НАБЛЮДЕНИЙ;

RT - МЕТОД ОБЕСПЕЧИВАЕТ ЯВНЫЙ УЧЕТ ВСЕХ ИСКАЖАЮЩИХ ФАКТОРОВ.

ЕГО РЕАЛИЗАЦИЯ ТРЕБУЕТ ПРИВЛЕЧЕНИЯ БОЛЬШОГО ОБЪЕМА ОПЕРАТИВНОЙ АПРИОРНОЙ ИНФОРМАЦИИ

И

высокой скорости вычислений.

ИНТЕНСИВНОСТЬ ИК-ИЗЛУЧЕНИЯ

- где
 - - излучение поверхности (ПП),
 - **I**_{ATM} - излучение атмосферы,
 - **I**_{RFL} отраженное от ПП излучение,

 - **I**_{SCT} - рассеянное излучение,
 - вклад "бокового подсвета" I_{ADJ}

ФУНКЦИЯ РАЗМЫТИЯ ТОЧКИ, ПЕРИСТАЯ ОБЛАЧНОСТЬ, λ =3.75 MM

- излучательная способность ПП
- температура поверхности (ТПП),
- зенитный угол наблюдения,
- τ_λ оптическая толщина атмосферы,
- Р_λ функция пропускания атмосферы,
- $B_{\lambda}(T)$ функция Планка,
- где

 $\Theta_{\mathbf{v}}$

T_S

ε, S

$$\mathbf{P}_{\lambda} = \exp[-\tau_{\lambda}(\Theta_{\mathbf{v}})],$$

$$\mathbf{I}_{\mathsf{SRF}} = \boldsymbol{\varepsilon}_{\lambda}{}^{\mathsf{S}}\mathbf{B}_{\lambda}[\mathbf{T}_{\mathsf{S}}]\mathbf{P}_{\lambda},$$

АТМОСФЕРНАЯ КОРРЕКЦИЯ

ИЗМЕРЯЕМАЯ ВЕЛИЧИНА: І_λ(х,у) НЕОБХОДИМО НАЙТИ: Т_s(х,у) ВЫЧИСЛЕНИЯ:

 $\Delta \mathbf{I}_{COR}(\mathbf{x},\mathbf{y}) = \mathbf{I}_{ATM} + \mathbf{I}_{RFL} + \mathbf{I}_{SCT} + \mathbf{I}_{ADJ} \quad \& \quad \mathbf{P}_{\lambda}(\mathbf{x},\mathbf{y})$

 $\mathbf{B}_{\lambda}[\mathbf{T}_{S}] = (\mathbf{I}_{\lambda} - \Delta \mathbf{I}_{COR}) / (\mathbf{P}_{\lambda} \varepsilon_{\lambda}^{S}) \qquad \&$

$$B_{\lambda}[T_{S}] \rightarrow T_{S}(x,y)$$

ИСТОЧНИКИ АПРИОРНОЙ ИНФОРМАЦИИ

- сеть локальных наземных метео и фотометрических измерений параметров атмосферы;
- региональные статистические и прогностические модели параметров атмосферы;
- спутниковые измерения метеорологических параметров атмосферы, характеристик атмосферного аэрозоля и облачности.

ПРИМЕНЯЕМЫЕ ПРОГРАММНЫЕ СРЕДСТВА

MODTRAN, LOWTRAN, 6S, ATCOR, FLAASH

ПРОГРАММНОЕ ОБЕСПЕЧЕНИЕ,РАЗРАБОТАННОЕ В ИОА СО РАН

ИНТЕРФЕЙС

ПРОГРАММЫ

MODIS data processing					X
Please select products					
Level 2 products	Required products				
Cloud mask	Level 1B 1KM data	D:\OUT174\MOD021KM.A2006	Browse	Retrieve	Preview
Water vapor (Near infrared)	Level 1B 500M data	D:\OUT174\MOD02HKM.A2006	Browse	Retrieve	Preview
Atmospheric profiles	Level 1B 250M data	D:\OUT174\MOD02QKM.A2006	Browse	Retrieve	Preview
Cloud top properties	Geolocation data	D:\OUT174\MOD03.A2006174.	Browse	Retrieve	Preview
Land surface temperature	NCEP GDAS file	D:\OUT174\gdas1.PGrbF00.06	Browse	Retrieve	Preview
Atmospheric correction	TOAST Ozone file (Optional)	D:\OUT174\TOAST16_060623.	Browse	Retrieve	Preview
Band 21/22 (4 µm)	NISE Snow/Ice file (Optional)	D:\OUT174\NISE_SSMIF13_20	Browse	Retrieve	Preview
Band 32 (12 µm)	NCEP Ice Concentration file	D:\OUT174\eng.060623	Browse	Retrieve	Preview
Fire detection	REYNOLDS Blended SST file	D:\OUT174\oisst.20060621	Browse	Retrieve	Preview
MOD14 algorithm With atmospheric correction					
Select/unselect all					
	L.				
Start task automatically		Back	Co	ontinue	Cancel
1. Восста атмосфер	новлени Эы.	е парамет	гро	B	
2. Атмосо измерени	рерная к ій.	оррекция		< -	
3. Детект объектов	ировани	е теплові	ых		
4. Визуал	изация д	цанных.			
-					

ДЛЯ ОСУЩЕСТВЛЕНИЯ АТМОСФЕРНОЙ КОРРЕКЦИИ НЕОБХОДИМО В МОМЕНТ СПУТНИКОВЫХ ИЗМЕРЕНИЙ ИСПОЛЬЗОВАТЬ АПРИОРНУЮ ИНФОРМАЦИЮ О КЛЮЧЕВЫХ ПАРАМЕТРАХ ОПТИКО-МЕТЕОРОЛОГИЧЕСКОГО СОСТОЯНИЯ АТМОСФЕРЫ.

КЛЮЧЕВЫЕ ПАРАМЕТРЫ – ВЕРТИКАЛЬНЫЕ ПРОФИЛИ ТЕМПЕРАТУРЫ И ВЛАЖНОСТИ, ОПТИЧЕСКАЯ ТОЛЩИНА И ВЫСОТА ПОЛУПРОЗРАЧНОЙ ОБЛАЧНОСТИ, АЭРОЗОЛЬ.

О ВОЗМОЖНОСТИ ИСПОЛЬЗОВАНИЯ КЛЮЧЕВЫХ ОПТИКО-МЕТЕОРОЛОГИЧЕСКИХ ПАРАМЕТРОВ АТМОСФЕРЫ, ПОЛУЧЕННЫХ НА ОСНОВЕ СПУТНИКОВЫХ ИЗМЕРЕНИЙ

Среднеквадратическая погрешность восстановления профилей: (a) температуры, (b) влажности (g/kg) и (c) озона (ppmv) по данным MODIS.

Seemann, S., J. Li, W. P. Menzel, and L. Gumley, 2003: Operational Retrieval of Atmospheric Temperature, Moisture, and Ozone from MODIS Infrared Radiances. Journal of Applied Meteorology, Vol. 42, P. 1072-1091.

ВАЛИДАЦИЯ СПУТНИКОВЫХ ДАННЫХMOD04ИMOD05(ТОМСК, 2003)Аэрозоль: АОТ для λ=470 нмВлагосодержание атмосферы

25

УЧЕТ ВЛИЯНИЯ МОЛЕКУЛЯРНОГО ПОГЛОЩЕНИЯ НА ИЗМЕРЯЕМОЕ ИК-ИЗЛУЧЕНИЕ

Методы	Спектральные каналы MODIS										
расчета	#20	#21	#31	#32							
Селективное поглощение											
LBLRTM v11.3	1.42	0.38	0.86	0.77							
MODTRAN v3.5	1.42	0.43	0.97	0.90							
Континуальное поглощение											
LBLRTM v11.3	0.09	1.31 1.48		2.03							
MODTRAN v3.5	0.13	1.48	1.50	2.02							

Сравнение «точного» line-by-line метода LBLRTM и приближенного метода MODTRAN 3 говорит о том, что различия в результатах расчета атмосферной поправки не превышают 0.25 К.

ВЛИЯНИЕ ОШИБОК ЗАДАНИЯ ВЕРТИКАЛЬНЫХ ПРОФИЛЕЙ МЕТЕОПАРАМЕТРОВ АТМОСФЕРЫ

- ДОМИНИРУЮЩИЙ ВКЛАД ПРИНАДЛЕЖИТ ОШИБКАМ В ПРОФИЛЯХ ТЕМПЕРАТУРЫ И ВЛАЖНОСТИ В НИЖНЕМ 5-км СЛОЕ АТМОСФЕРЫ.
 ВКЛАД ОШИБОК В ПРОФИЛЯХ ДРУГИХ АТМОСФЕРНЫХ ГАЗОВ СОСТАВЛЯЕТ МЕНЕЕ 0.2 К.
- ВЕРТИКАЛЬНОЕ РАЗРЕШЕНИЕ ПРОФИЛЕЙ МЕТЕОПАРАМЕТРОВ, ПОЛУЧАЕМЫХ ПО СПУТНИКОВЫМ ДАННЫМ ЯВЛЯЕТСЯ ДОСТАТОЧНЫМ.

ВЛИЯНИЕ ОШИБОК ЗАДАНИЯ ВЕРТИКАЛЬНЫХ ПРОФИЛЕЙ МЕТЕОПАРАМЕТРОВ АТМОСФЕРЫ

	Спектральные каналы MODIS									
Параметр	#20	#21	#31	#32						
	Лето средних широт									
$\delta T_{AIR} = +2 \text{ K}$	+0.23	+0.16	+0.92	+1.28						
$\delta W_{H2O} = +20\%$	-0.17	-0.01	-0.96	-1.34						
$\delta W_{GAS} = +40\%$	-0.19	-0.17	-0.10	-0.07						
	Тропики									
$\delta T_{AIR} = +2 \text{ K}$	+0.28	+0.16	+1.82	+2.67						
$\delta W_{H2O} = +20\%$	-0.25	-0.02	-2.27	-3.28						
$\delta W_{GAS} = +40\%$	-0.21	-0.18	-0.14	-0.10						

 ЗНАЧЕНИЯ бТ_S В ЗАВИСИМОСТИ ОТ бТ_{AIR} И бW_{H20} ИМЕЮТ РАЗНЫЙ ЗНАК И ПРОИСХОДИТ ВЗАИМНАЯ КОМПЕНСАЦИЯ ВЛИЯНИЯ НА РЕЗУЛЬТАТ ОШИБОК В ЗАДАНИИ ЭТИХ МЕТЕОПАРАМЕТРОВ. АНАЛИЗ СПУТНИКОВЫХ МЕТОДОВ УКАЗЫВАЕТ ИМЕННО НА ТАКОЙ ТИП КОРРЕЛЯЦИИ МЕЖДУ бТ_{AIR} И бW_{H20} 28

ВЛИЯНИЕ ОШИБОК ЗАДАНИЯ ВЕРТИКАЛЬНЫХ ПРОФИЛЕЙ МЕТЕОПАРАМЕТРОВ АТМОСФЕРЫ

Существуют различия в значениях δT_s в каналах 11µm (#31) и 12µm (#32). Чтобы получить значение $\delta T_s \approx 0$, следует использовать принцип "*split-window*",

τ.e.
$$\delta T_{s} = \delta T_{s,11} - C_{ERR} \cdot (\delta T_{s,12} - \delta T_{s,11}), C_{ERR} ≈ 2.24$$

Это позволяет реализовать «спектральный» RT-подход, в котором осуществляется автоматическая компенсация ошибок задания априорной метеоинформации, если определять ТПП как

$$T_{S} = T_{S,11} + C_{ERR}(T_{S,12} - T_{S,11})$$

Тестирование спутниковой априорной 30 информации: пример EOS/MODIS

Томский регион (55-62°N, 74-90°E). Июнь 2006 г., 97 гран., 7.385.550 пикселей.

Различия восстановленных «спектральных» значений ТПП ($T_{S,\lambda}$) для трех ИК-каналов MODIS не превышают 0.5 К. Выявлены расхождения порядка 1.4 К между $T_{S,\lambda}$ и данными MOD11. Аналогичный результат представлен в работе Mao K., et al. "An RM-NN algorithm for retrieving land surface temperature and emissivity from EOS/MODIS data // J. Geophys. Res. 2007.

Каналы	ТПП				
λ=3.96 μm (21/22)	298,85				
λ=11,0 μm (31)	298,97				
λ=12,0 μm (32)	299,30				
MOD11_L2	297,62				

Тестирование спутниковой априорной 31 информации: пример ETM+/Landsat-7

СТАТИСТИЧЕСКИЕ ХАРАКТЕРИСТИКИ ЗНАЧЕНИЙ ТПП, ВОССТАНОВЛЕННЫХ ПО ДАННЫМ ETM+/LANDSAT-7 И MODIS/TERRA

Пример восстановления ТПП в условиях полупрозрачной облачности (1)

Спутниковые снимки (MODIS) территории Лугинецкого НГКМ.

Прозрачная атмосфера (А)

Дым, облачность (В)

ПРИМЕР ВОССТАНОВЛЕНИЯ ТПП В УСЛОВИЯХ ПОЛУПРОЗРАЧНОЙ ОБЛАЧНОСТИ (2)

ДЛЯ СИТУАЦИИ (В) ПРОСТРАНСТВЕННАЯ СТРУКТУРА ТПП ЗАМЕТНО И СУЩЕСТВЕННО ИСКАЖЕНА ДЫМОМ И ОБЛАЧНОСТЬЮ.

ПОСЛЕ АТМОСФЕРНОЙ КОРРЕКЦИИ ТЕМПЕРАТУРНАЯ СТРУКТУРА ТЕСТОВОГО УЧАСТКА ПОВЕРХНОСТИ ВОССТАНОВЛЕНА.

ИНТЕНСИВНОСТЬ ИК - ИЗЛУЧЕНИЯ

РЕШАЮЩЕЕ ПРАВИЛО ДЕТЕКТИРОВАНИЯ

$P\{x\} > dP$

где dP - пороговая величина функции P{x}, x - спутниковые измерения в спектральных каналах видимого и инфракрасного диапазонов.

Как правило, используемые пороговые алгоритмы детектирования пожаров не учитывают влияние атмосферы на измеряемые величины

RT-МЕТОД ДЕТЕКТИРОВАНИЯ ПОЖАРОВ

Решающее правило *B_F > dB* не зависит от оптико-геометрических условий спутниковых наблюдений

RTM-метод:

Этап 1. Получение оперативной априорной информации (профили температуры и влажности воздуха, характеристики аэрозоля и облачности).

Этап 2. Восстановление ТПП в каналах 21/22, 31, 32 ($T_{s,21}$, $T_{s,31}$, $T_{s,32}$). Учет ошибок в задании метеоданных. Отбраковка случаев плотной облачности. Учет влияния полупрозрачной облачности. Этап 3. Детектирование тепловых объектов по признакам: 1) $T_{s,21} > 302$ K 2) $\Delta T = T_{s,21} - T_{s,31} > 3$ K 40

РЕЗУЛЬТАТЫ СРАВНЕНИЯ АЛГОРИТМОВ

Методы	Факельные установки						
	BCE	F1F10					
MOD14	60	6					
MOD14 ^m	83	21					
ИОА	-	36					
RTM	122	53					

Методы	\mathbf{N}_{Σ}	Факельные установки												
		F1	F2	F3	F4	F5	F6	F7	F8	F9	F10	X1	X2	X3
MOD14	60	4	—	_	_	_	_	_	—	1	1	14	14	26
MOD14 ^m	83	6	2	—	1	_	1	1	—	6	4	18	18	26
RTM	122	13	4	3	4	2	8	1	1	8	9	21	21	27
	T _{21,CP}	309	304	306	306	305	305	308	303	307	306	314	320	329

ЗАКЛЮЧЕНИЕ

✓ МОДЕЛИ ПЕРЕНОСА ТЕПЛОВОГО ИЗЛУЧЕНИЯ ЧЕРЕЗ АТМОСФЕРУ ЯВЛЯЮТСЯ ЭФФЕКТИВНЫМ СРЕДСТВОМ КОРРЕКТНОГО РЕШЕНИЯ ЗАДАЧ ИК-ЗОНДИРОВАНИЯ ЗЕМНОЙ ПОВЕРХНОСТИ ИЗ КОСМОСА.

✓ПРИМЕНЕНИЕ RT-МЕТОДА В ВАРИАНТЕ "SPLIT-WINDOW" ПОЗВОЛЯЕТ СДЕЛАТЬ ЭТО РЕШЕНИЕ УСТОЙЧИВЫМ К ОШИБКАМ ЗАДАНИЯ АПРИОРНОЙ МЕТЕОРОЛОГИЧЕСКОЙ ИНФОРМАЦИИ. ✓ Использование RTM-метода в задаче детектирования очагов пожаров может существенно повысить результативность пожарного мониторинга, особенно для слабоинтенсивных очагов или для сложных оптико-метеорологических условий наблюдений.

