Имитационное моделирование гиперспектральных изображений земной поверхности: методика и результаты

Б.М. Балтер¹, Д.Б. Балтер¹, В.В. Егоров¹, А.П. Калинин², В.А. Котцов¹, А.Г. Орлов³, И.Д. Родионов³, М.В. Стальная¹

¹Институт космических исследований РАН 117997 Москва, ул. Профсоюзная, 84/32 E-mail: <u>victor_egorov@mail.ru</u> ²Институт проблем механики РАН, 119526 Москва, проспект Вернадского 101, корп. 1 E-mail: <u>kalinin@ipmnet.ru</u> ³Институт химической физики им. Н.Н. Семенова РАН 119991 Москва, ул. Косыгина, 4 E-mail: <u>aorlov@reagent-rdc.ru</u>

Излагаются методические вопросы имитационного моделирования гиперспектральных изображений земной поверхности с помощью программного комплекса «Геодиалог». Приводятся формулы для расчета напряжения сигнала на выходе детектора и интегратора с учетом влияния светотеневой обстановки и замутненности атмосферы. Оценивается уровень генерационно-рекомбинационного шума и определяется величина отношения выходного напряжения сигнала к среднеквадратичному значению шума. Даны примеры симулированных гиперспектральных изображений для двух длин волн.

Введение

Определение потенциальных возможностей гиперспектрометров аэрокосмического базирования, их места и роли в научных исследованиях и практических приложениях в области ДЗ представляется весьма важной задачей. Ее решение, базирующееся только на результатах натурных экспериментов, является достаточно трудоемким и дорогостоящим. Более эффективным следует считать подход, основанный на разумном сочетании исследований *in situ* и компьютерных экспериментов по имитационному моделированию гиперспектральных изображений земной поверхности. Результаты такого моделирования особенно актуальны в настоящее время в связи с интенсивным развитием в России и за рубежом гиперспектральных исследований, имеющих большое научное и прикладное значение.

Для реализации указанного подхода необходима разработка методики имитационного моделирования гиперспектральных изображений земной поверхности, а также соответствующих алгоритмических и программных средств, позволяющих генерировать двумерные поля яркости на основе задания электрофизических и геометрических характеристик зондируемых геосистем или параметров состояния последних [1].

Достижение целей имитационного моделирования предполагает, с одной стороны, качественно верное отображение всех моделируемых процессов (прохождение оптического излучения через атмосферу, его рассеяние на зондируемой поверхности, детектирование сигнала и др.), а с другой - достаточную простоту их описания.

Целью настоящей работы является изложение методики имитационного моделирования гиперспектральных изображений земной поверхности и результатов вычислительных экспериментов, демонстрирующих ее возможности.

Методика моделирования гиперспектральных изображений

Современные гиперспектрометры аэрокосмического базирования работают в диапазоне длин волн 0,35 – 15 мкм. Физические механизмы формирования оптического излучения, восходящего

от зондируемых объектов, в интервалах длин волн 0,35 - 3,5 мкм и 3,5 – 15 мкм различны, что необходимо учитывать при разработке методики имитационного моделирования. Основу последней составляет созданный нами алгоритм расчета яркости гиперспектральных изображений, как результат детектирования и последующего сглаживания оптического сигнала. Оптический сигнал, восходящий от произвольного элемента разрешения земной поверхности (пиксела) характеризуется своей мощностью (лучистым потоком). На выходе детекторного элемента матрицы гиперспектрометра к полезному сигналу добавляется шум. Основным видом шума в полупроводниках, согласно [2], помимо теплового, фотонного и шума считывания, является генерационнорекомбинационный шум (ГРШ), аналогичный дробовому шуму в вакуумных приборах. Поэтому в дальнейшем в работе учитывается только ГРШ. Ниже приводятся формулы для расчета мощности оптического сигнала и ГРШ для двух указанных выше поддиапазонов.

Мощность оптического сигнала и генерационно-рекомбинационного шума (ГРШ) в диапазоне от 0,35 до 3,5 мкм

В работе [2] приведена формула для расчета мощности (лучистого потока) оптического сигнала. Однако он не учитывает влияния состояния атмосферы и светотеневой обстановки, обусловленный рельефом местности. Поэтому далее излагается подход, позволяющий достаточно строго рассчитывать яркость гиперспектральных изображений [3]. Он основан на использовании экспериментальных данных о спектральной, яркостной и угловой структуре падающей солнечной радиации и излучения небосвода, а также о соответствующих этой структуре значениях коэффициентов спектральной яркости (КСЯ). В этом случае формула для расчета мощности оптического сигнала Y_i^j имеет вид

$$Y_{i}^{j} = \frac{1}{\pi} \cdot \left\{ S_{\lambda} T_{a}^{\prime} T_{a}^{\prime \prime} \left[K_{cm} \cdot r_{\lambda}^{j}(\theta, a) \cdot \cos Z_{\oplus} + \frac{1}{k(\lambda, Z_{\oplus})} \cdot R_{\lambda}^{j}(\theta, a) \right] + Y_{\partial} \right\} \cdot \omega \cdot S_{cx} \cdot \Delta \lambda_{i} \cdot k_{i},$$
(1)

где S_{λ} – солнечная постоянная, т.е. спектральная плотность излучения Солнца на верхней границе атмосферы; $r_{\lambda}(\theta_j, a)$ - КСЯ *j*-го элемента в строке изображения земной поверхности (пиксела произвольной строки изображения). Этот элемент наблюдается под углом θ_j от надира в *i* - ом спектральном канале гиперспектрометра с центральной длиной волны λ_i , *a* - вектор параметров состояния зондируемого объекта (среды); $\omega = \left(\frac{\delta}{H}\right)^2$ телесный угол мгновенного поля зрения теле-

скопа, δ^2 - площадь элемента разрешения (пиксела) на земной поверхности в предположении равенства линейного разрешения сенсора вдоль и поперек трассы измерений, H – высота полета носителя; $S_{ex} = \pi D^2/4$, D – диаметр входного зрачка; $\Delta \lambda_i$ - ширина *i*-го спектрального канала по уровню половинной мощности; k_i - к.п.д. *i*-го спектрального канала (обычно $k_i \approx 0,2$); $T_a' \approx \exp[-\tau_\lambda(\sec Z_{\oplus})]$ - пропускание атмосферы от источника излучения (Солнце) до земной поверхности, $T_a'' \approx \exp[-\tau_\lambda(\sec \theta)]$ - пропускание атмосферы от объекта зондирования до входной апертуры сенсора, τ_λ - оптическая толщина ослабления (экстинции) излучения атмосферой при $Z_{\oplus} = 0^0$, Z_{\oplus} - зенитный угол Солнца; Y_o - мощность аддитивной составляющей лучистого потока, обусловленного влиянием атмосферной дымки; K_{cr} – коэффициент, характеризующий светотеневую обстановку в момент гиперспектральной съемки ($K_{cr} = 1$ на солнечной стороне зондируемой поверхности и равен нулю на теневой стороне); $k(\lambda, Z_{\oplus})$ - экспериментальная зависимость спектрального отношения облученности элемента разрешения зондируемой поверхности прямой солнечной радиацией к облученности небосводом; $R_{\lambda}^{j}(\theta, a)$ - коэффициент спектральной яркости зондируемого объекта в зоне тени, т.е. КСЯ объекта при облучении его радиацией небосвода [4].

Как следует из анализа формулы (1), множителями, несущими информацию о типе и состоянии объектов зондируемой поверхности или среды, являются функции $r_{\lambda}^{j}(\theta, a)$ и $R_{\lambda}^{j}(\theta, a)$, т.е. КСЯ.

Лучистый поток (1), формирующий *j*-ый элемент гиперспектрального изображения в *i*-ом спектральном канале, преобразуется в электрический сигнал, напряжение которого определяется следующей формулой:

$$U_{c} = Q \cdot q_{\mathfrak{g}} \cdot R_{\mathfrak{g}} = \frac{Y_{i}^{J} \cdot \eta \cdot \lambda_{i}}{hc} \cdot q_{\mathfrak{g}} \cdot R_{\mathfrak{g}}, \qquad (2)$$

где $Q = \frac{Y_i^j \cdot \eta \cdot \lambda_i}{hc}$ - число фотоэлектронов на выходе детекторного элемента в секунду; η - квантовая эффективность элементов матрицы (обычно $\eta = 0,15$ - 0,2 для длин волн от 0,4 до 0,8 мкм и

0,01 для диапазона 2-5 мкм); $h = 6,625 \cdot 10^{-34} Bm \cdot c^2$ - постоянная Планка; c - скорость света; q_3 - заряд электрона; R_{μ} - сопротивление нагрузки детекторного элемента.

Число накопленных за время наблюдения T_{μ} электронов, характеризующих полезный сигнал, равно $N_c = Q \cdot T_{\mu}$, где T_{μ} – время наблюдения, величина которого выбирается, исходя из времени пролета летательным аппаратом элемента разрешения на поверхности;. Согласно [2] число электронов, обусловленных генерационно-рекомбинационным шумом, равно $N_{\mu\nu} = \sqrt{N_c} = \sqrt{Q \cdot T_{\mu}}$. Тогда отношение сигнал/шум (SNR) гиперспектрального изображения составит

$$SNR = \frac{N_u}{N_{uu}} = \frac{U_c}{\sigma_{IPIII}} = \sqrt{Q \cdot T_u},$$
(3)

где $\sigma_{_{TPIII}}$ - стандартное отклонение напряжения ГРШ.

Можно повысить *SNR* путем усреднения сигнала от смежных пикселов. Если значения сигнала в этих пикселах примерно одинаковы по амплитуде, то при усреднении по *N* пикселам *SNR* возрастает в \sqrt{N} раз.

Мощность оптического сигнала и генерационно-рекомбинационного шума в диапазоне от 3,5 до 15,0 мкм

Воспользуемся здесь формулами, приведенными в [2] для мощности оптического сигнала:

$$Y_{i}^{j} = \frac{1}{\pi} \cdot \left(\frac{2\pi \cdot c^{2}h}{\lambda_{i}^{5}}\right) \cdot \exp\left(-\frac{hc}{kT_{0}\lambda_{i}}\right) \cdot S_{ax} \cdot \chi_{i}(\theta, a) \cdot \omega \cdot \Delta\lambda_{i} \cdot k_{i} \cdot T_{a}^{"} + Y_{c}, \tag{4}$$

где $\chi_i^j(\theta, a)$ - степень «черноты» или излучательная способность зондируемого объекта (среды), соответствующая *j*-му пикселу в строке изображения, которая зависит от длины волны спектрального канала, условий съемки и вектора параметров состояния зондируемого объекта (среды); $k = 1,38 \cdot 10^{-23} \left[\frac{Bm}{\Gamma u \cdot zpad} \right]$ - постоянная Больцмана; T_0 – термодинамическая температура зонди-

руемого объекта; Y_c – лучистый поток собственного излучения атмосферы. В задачах зондирования земной поверхности лучевой поток рассчитывается для спектральных каналов, размещенных в окнах прозрачности атмосферы, где ее вклад невелик и им во многих случаях можно пренебречь. Остальные обозначения аналогичны тем, что приняты выше в (1).

В методах ИК-зондирования главными информационными параметрами являются T_0 и $\chi_i^j(\theta, a)$. Значения напряжения сигнала U_c и SNR рассчитываются по формулам (2) и (3).

Итак, формулы (1-4) позволяют рассчитывать значения полезного сигнала на выходе сенсора и имитировать гиперспектральные изображения с учетом генерационно-рекомбинационного шума.

Примеры использования методики

В качестве примеров использования описанной выше методики нами была выбрана модель территории, основная часть которой занята конусообразной горой, покрытой растительностью.

На рис. 1а-г приведены результаты имитации гиперспектральных изображений конусообразной «горы», соответствующие параметрам гиперспектрометра AVIRIS при съемке с высоты 20 км [5]. Симулированные изображения представляют собой результат сложного взаимодействия эффектов освещенности, зависящих от положения Солнца, угла визирования поверхности гиперспектрометром, ориентации элементарных отражающих площадок и распределения по высоте значений относительного содержания хлорофилла. На рис. 1а показана схема высотного распределения относительного содержания хлорофилла в листьях растительности, а на рис. 1г – даны графики КСЯ для выбранных участков, указанных на рис. 1б.

Рис. 1. Результаты имитационного моделирования для гиперспектрометра типа AVIRIS: а - сечение вдоль горизонтальной линии, проходящей через вершину «горы» (по осям графиков отложены условные единицы). Сплошная линия – относительное содержание хлорофилла, пунктирная - высота; б - изображение «горы», симулированное для длины волны 660 нм. Солнце – сверху слева. Внизу справа – тень. Цифрами 1-5 указаны участки, для которых на рис. 1 г приведены графики КСЯ; в – изображение, аналогичное, приведенному на рис. 1 б для длины волны 800 нм; г – КСЯ для выбранных участков. Абсцисса – длина волны в диапазоне 500 – 800 нм, ордината – значения КСЯ от 0,2 до 1

На рис. 2 дан пример симулированного изображения ИК-диапазона ($\lambda = 8$ и 12 мкм) для той же территории, что использована выше и для того же носителя. Рис. 2а соответствует распределению температуры вдоль линии, проходящей через вершину «горы» (по осям графиков отложены условные единицы); рис. 26 – показывает изображение «горы», симулированное для длины волны 8 мкм, а рис. 2в – изображение, аналогичное приведенному на рис. 2б, для длины волны 12 мкм; на рис. 2г приведены спектры излучения для двух участков: «вершины» ($T_0 = 223$ K) и «подножия» ($T_0 = 323$ K). Эти участки показаны соответственно длинной и короткой стрелкой. Абсцисса – длина волны в диапазоне 4-20 мкм, ордината – значения яркости теплового ИК-излучения в условных единицах. Излучательная способность полагалась одинаковой по всей поверхности «горы» и равной 0,95.

Анализ рисунков показывает, что рис. 2а и б качественно верно отображают процесс излучения волн в ИК-диапазоне и перераспределение их энергии по длине волны при изменении температуры зондируемой поверхности.

Рис. 2. Имитационное моделирование гиперспектральных изображений в ИК-диапазоне: а - сечение температуры вдоль линии, проходящей через вершину «горы»; б - изображение «горы», симулированное для длины волны 8 мкм; в – изображение, аналогичное приведенному на рис. 2 б, для длины волны 12 мкм; г – спектры излучения для двух участков: «вершины» и «подножия»

Результаты и их обсуждение

Представленные выше методика имитационного моделирования гиперспектральных изображений земной поверхности и результаты ее использования позволяют сформулировать ряд утверждений.

1. Изложенная выше методика имитационного моделирования гиперспектральных изображений разработана в отсутствие каких-либо жестких предположений и условий и носит достаточно общий для этого типа исследований характер. Действительно, формулы (1) и (4) удовлетворительно отображают физические процессы формирования лучистого потока, поступающего во входную апертуру гиперспектрометра, в широком диапазоне длин волн – от 0,35 до 15 мкм. В частности, в (1) входят аддитивные и мультипликативные составляющие, ответственные за учет светотеневой обстановки, влияния атмосферной дымки, а также за изменения значений коэффициентов спектральной яркости зондируемых объектов в зависимости от условий их облучения.

Выражения (2) и (3) с учетом формул (1) и (4) дают возможность достаточно просто и корректно рассчитывать величину напряжений полезного сигнала на выходе гиперспектрометра и отношения сигнал/шум.

2. Практическое использование приведенной выше методики может найти применение в решении следующих научных и прикладных задач:

- определение чувствительности спектральных данных к изменениям параметров состояния зондируемых объектов;

- оценка информативности этих данных и количества смысловой информации (информации Фишера), содержащейся в них;

- уточнение используемых моделей зондируемых объектов (геосистем), процессов формирования восходящего от них излучения, картографирование параметров состояния объектов;

- выработка рекомендаций по проектированию бортовых гиперспектрометров и режимов гиперспектральной съемки;

- решение многих обратных задач ДЗ, в том числе и прикладных.

3. Проведение имитационного моделирования гиперспектральных изображений требует априорного знания зависимостей $r_{\lambda}^{j}(\theta, a)$ и $\chi_{i}(\theta, a)$ от параметра a.

Анализ литературных источников (см., например, [6]) показывает, что получение инвариантных зависимостей КСЯ и «степени черноты» от интересующего потребителя аэрокосмической информации параметра – задача достаточно сложная и трудоемкая. На практике чаще всего обходятся линейными регрессионными соотношениями для $r_{\lambda}^{j}(\theta, a)$ и $\chi_{i}(\theta, a)$, что не позволяет достичь потенциальной точности классификации и оценки состояния объектов зондирования. Настоящая методика может способствовать эффективному решению задачи нахождения упомянутых выше инвариантных функций посредством параметризации модельных зависимостей $r_{\lambda}^{j}(\theta, a)$ и $\chi_{i}(\theta, a)$ и подгонки их к данным аэрокосмических гиперспектральных измерений (при наличии данных наблюдений *in situ*).

4. Предложенная методика имитационного моделирования может быть использована и для симулирования аэрокосмических изображений, получаемых такими распространенными в практике ДЗ сенсорами, как многоспектральные сканеры, а также спектрометры и радиометры ИКдиапазона. Она предоставляет проектировщикам бортовой аппаратуры ДЗ возможность оптимизации параметров сенсоров, алгоритмов обработки получаемых данных, режимов съемки и использования получаемой информации.

Работа выполнена при поддержке гранта РФФИ 06-08-01576.

Литература

1. Балтер Б.М., Ведешин Л.А., Егоров В.В. и др. Аэрокосмический радиолокационный мониторинг. Коллективная монография. Под ред. А. И. Канащенкова. – М.: Радиотехника, 2006. 240 с.

2. Формозов Б.Н. Аэрокосмические фотоприемные устройства в видимом и инфракрасном диапазонах: Учебное пособие. СПбГУАП. СПб., 2002. 120 с.

3. Балтер Б.М., Балтер Д.Б., Егоров В.В. и др. Методика имитационного моделирования гиперспектральных изображений земной поверхности // Исследование Земли из космоса, 2007. № 5. С. 21-29.

4. Дистанционное зондирование моря с учетом атмосферы / Под ред. Урденко В.А., Циммермана Г. Москва-Берлин-Севастополь. АН СССР, АН ГДР, АН УССР. 1987. т. 2, часть 1, 219 с.

5. Porter W.M., Enmark H.T. A system overview of Airbone Visible/Infrared Imaging Spectrometer (AVIRIS), Proc. SPIE, 1987, P. 834-842.

6. Физические основы, методы и средства исследований Земли из космоса / Под ред. Я.Л. Зимана) // Итоги науки и техники. Сер. «Исслед. Земли из космоса». М.: ВИНИТИ. 1987. т. 1. 196 с.