Учет отражения солнечного излучения от дна на мелководье при обработке данных спутниковых сканеров цвета

О.В. Копелевич, В.И. Буренков, С.В. Вазюля, С.В. Шеберстов, А.А. Терехова, А.П. Шибалкова

Институт океанологии им. П.П. Ширшова РАН 117997 Москва, Нахимовский пр., 36 E-mail: <u>oleg@sio.rssi.ru</u>

Представлен алгоритм коррекции спектрального коэффициента яркости водной толщи на отражение ото дна на мелководье. Алгоритм основан на использовании простой приближенной формулы для коэффициента яркости, точность которой оценивалась численным моделированием, и малопараметрических моделей показателей поглощения и рассеяния назад морской воды; обратная задача решалась методом нелинейной оптимизации с ограничением. На основе данных натурных измерений в северной половине Каспийского моря выведены новые регрессионные алгоритмы для расчета концентрации хлорофилла и взвеси, а также показателя ослабления света морской воды по данным дистанционных измерений с учетом влияния отражения ото дна на мелководье. Рассмотрены возможности использования разработанных алгоритмов при обработке данных спутниковых сканеров цвета для мелководных районов.

Введение

Интерес к оптике мелководных районов и возможностям использования оптических методов для оценки характеристик дна, видимости на мелководье, состояния донной растительности особенно возрос в последнее десятилетие. В 1996-2003 гг. в США были выполнены два крупных проекта: CoBOP (Coastal Benthic Optical Properties) и HyCODE (Hyperspectral Coastal Ocean Dynamics Experiments), направленные на разработку аппаратуры и моделей для измерения и оценки вклада отражения ото дна в яркость восходящего излучения в прибрежных водах, понимания процессов, определяющих оптические свойства вод, и развития алгоритмов использования данных о цвете вод в мелководных районах. В 2003 г. выпущен тематический номер журнала Limnology and Oceanography, специально посвященный оптике и дистанционным наблюдениям прибрежных мелководных районов [1]. Исследованы важные специальные вопросы (влияние неоднородности и наклона дна, геометрии наблюдений, возможность оценки глубины и типа донного покрова в океане оптически малой глубины), однако действующий алгоритм расчета био-оптических характеристик воды на данный момент так и не создан. Это объясняется трудностью решения такой задачи, поскольку воды на мелководье в большинстве случаев относятся к так называемому типу вод 2, для которого надежный биооптический алгоритм до сих пор не разработан даже для случая глубокого океана. По нашему мнению, такой алгоритм должен быть региональным и разрабатываться на основе данных натурных измерений.

В настоящей работе рассматривается северная часть Каспийского моря, где глубины в основном меньше 15 метров. Предполагается, что атмосферная коррекция выполнена, и в качестве исходной информации используются спектральные значения коэффициента яркости водной толщи $\rho(\lambda)$. В качестве конечного продукта рассчитываются концентрации хлорофилла и взвеси. Алгоритм расчета включает два этапа: на первом решается задача коррекции измеренного на мелководье спектра коэффициента яркости водной толщи на вклад излучения, отраженного от дна; на втором – используются регрессионные алгоритмы, выведенные на основе данных натурных измерений для Северного Каспия для расчета концентрации хлорофилла и взвеси, а также показателя ослабления света морской воды.

Район исследований, аппаратура и методика проведения измерений

Данные натурных измерений получены в морских экспедициях, проведенных в 2003, 2004 и 2006 гг. в северной половине Каспийского моря (рис.1). В 2003 г. экспедиция проводилась на

судне MPC-150 в период с 4 по 9 июля, в 2004 г. – на НИС «Тантал» с 30 августа по 8 сентября, в 2006 г. – на НИС «Рифт» с 24 июля по 3 августа.

Рис. 1. Расположение станций, на которых проводились измерения; рядом указаны номера станций. Номера станций экспедиции 2003 г. подчеркнуты сверху, 2006 г. – снизу, 2004 г. не подчеркнуты

Во всех трех экспедициях использовался комплекс оптической аппаратуры, который включал плавающий спектрорадиометр с контрольным фотометром [2], зонд-прозрачномер с датчиком температуры воды [3] и стандартный белый диск. В экспедиции 2006 г. также использовался новый измеритель светового режима на поверхности и в водной толще, который позволяет получить абсолютные величины облученности на поверхности моря и на разных горизонтах в верхнем 100-метровом слое, причем можно измерять подводную облученность как сверху, так и снизу. Измерения проводятся в четырех спектральных каналах: 443, 490, 555 и 625 нм [4]. Помимо оптических характеристик, во всех трех экспедициях отбирались пробы воды для определения концентрации хлорофилла спектрофотометрическим методом; в 2003-2004 гг. определялись также весовые концентрации взвеси, собранной на фильтрах.

Биооптические характеристики в районе исследований изменялись в широких пределах: глубина видимости белого диска Z_{δ} - от 2 до 12 м, показатель ослабления света *c*(530) для длины волны 530 нм - от 0.37 до 5.7 м⁻¹, концентрация хлорофилла «а» *Chl* - от 0.18 до 11.2 мг·м⁻³. Средние спектры коэффициента яркости водной толщи, измеренного в надир посредством плавающего спектрорадиометра, для «мелководных» и «глубоководных» станций показаны на рис.2. Коэффициент яркости водной толщи $\rho(\lambda)$ определяется как:

$$\rho(\lambda) = \pi L_u(\lambda, 0^{-}) / E_d(\lambda, 0^{-}), \qquad (1)$$

где $L_u(\lambda, 0^{-})$ и $E_d(\lambda, 0^{-})$ - яркость восходящего излучения и облученность, создаваемая нисходящим потоком излучения, непосредственно под поверхностью моря.

К «мелководным» отнесены станции с глубинами, не превышающими 13 м. Хотя, с точки зрения влияния отражения ото дна, правильнее говорить об «оптически мелководных» станциях, ориентируясь на «оптическую глубину», мы использовали разделение по геометрической глубине, имея в виду обработку спутниковых данных, когда априорная информация об оптических характеристиках воды отсутствует. Всего анализировалсь данные для 37 станций: 17 мелководных и 20 глубоководных.

Оценка точности приближенной формулы для спектрального коэффициента яркости водной толщи в случае неглубокого моря

Сравнивая спектры на рис.2, можно отметить их существенное различие как по абсолютным величинам коэффициента яркости, так и по положению максимума спектральных кривых. Эти отличия связаны как с влиянием отражением ото дна, так и с оптическими характеристиками воды, которые различны в Северном и Среднем Каспии.

Рис. 2. Средние спектры коэффициента яркости водной толщи для мелководных (1) и глубоководных (2) станций

Следуя [5], будем использовать для спектрального коэффициента яркости водной толщи $\rho(\lambda)$ в случае неглубокого моря простую формулу, учитывающую влияние отражения ото дна:

 $\rho(\lambda) = \rho_{dp}(\lambda) \cdot [1 - exp(-2K_d(\lambda) H)] + \rho_B(\lambda) exp(-2K_d(\lambda) H),$ (2)

где H - глубина, $\rho_B(\lambda)$ - спектральный коэффициент отражения ото дна. $\rho_{dp}(\lambda)$ -спектральный коэффициент яркости для бесконечно глубокого океана и $K_d(\lambda)$ -спектральный показатель вертикального ослабления.

Отметим, что в [6] аналогичная формула рассматривалась для спектрального коэффициента диффузного отражения $R(\lambda) = E_u(\lambda, 0^{-})/E_d(\lambda, 0^{-})$ непосредственно под поверхностью моря:

$$R(\lambda) = R_{dp}(\lambda) + [R_B(\lambda) \cdot R_{dp}(\lambda)] \exp(-2K_d(\lambda) \cdot H),$$
(3)

где $R_B(\lambda)$ – спектральная величина альбедо дна, $R_{dp}(\lambda)$ – спектральный коэффициент диффузного отражения водной толщи для бесконечно глубокого океана. В [6] дан вывод этой формулы и выполнена оценка ее ошибок методом математического моделирования. Для 67 случаев проводилось сопоставление результатов расчетов по формуле (3) и методом Монте-Карло; среднее отношение приближенных значений к точным оказалось равным 1.13±0.19.

Есть и более точные формулы, из которых (2)-(3) получаются в результате упрощений (см., например, [7]). Однако более точные формулы содержат дополнительные параметры, что услож-

нит решение обратной задачи и, возможно, сделает ее нерешаемой. Имея в виду применимость формулы для решения обратной задачи, необходимо искать компромисс между точностью формулы и минимизацией числа параметров, обеспечивающих эту точность.

Оценка точности формулы (2) проводилась путем сравнения результатов, полученных при ее использовании и точным методом. Точные расчеты проводились модифицированным методом дискретных ординат [8]. Для проведения расчетов задавались необходимые входные параметры: высота Солнца, оптические толщины атмосферы и океана, вероятности выживания фотона и индикатрисы рассеяния. Чтобы приблизить проводимое моделирование к реальной ситуации и иметь возможность сравнения с данными измерений, использовались значения параметров, реально измеренных (спектральные величины коэффициента яркости излучения, выходящего из водой толщи, $\rho(\lambda)$ и показатель ослабления направленного излучения c(530)), по которым рассчитывались все другие параметры, необходимые для расчетов. Методика расчетов описана в [9].

Для моделирования взяты данные для двух станций, где проводились натурные измерения: ст.11, 2003 г. и ст.13, 2004 г.; их характеристики существенно различны:

Ст.11, 2003 г.: глубина 7.3 м, $Z_6 \approx 3$ м, c(530) = 4.4 м⁻¹, Chl = 2.15 мг·м⁻³;

Ст.13, 2004 г.: глубина 10 м, $Z_{\delta} \ge 10$ м, c(530) = 0.37 м⁻¹, Chl = 0.48 мг·м⁻³.

Измерения характеристик дна не проводились; согласно лоции, грунт на ст.11 представлял собой ил, песок и ракушечник, на ст.13 – средний песок и ракушечник. В нашем численном эксперименте использовались спектральные зависимости коэффициента отражения для песка [5, 10]; абсолютное значение коэффициента отражения при 555 нм принималось равным 0.22.

Сравнение результатов точных и приближенных расчетов показано на рис. За, б. Отметим

Рис. 3. Сравнение спектральных величин коэффициента яркости водной толщи на мелководье, рассчитанных точным методом - сплошные линии, и по приближенной формуле (2) – пунктир. а) ст.11, 2003 г., глубина 7.3 м; б) ст.13, 2004 г., глубина 10 м

очень хорошее совпадение результатов для ст.13, где отличие приближенных значений от точных не превышает 0.0006. Для ст.11 отличия заметно больше: максимальное составляет ~0.003, среднее по спектру ~0.002. Как видно из рис.3а, приближенные значения на всех длинах волн выше точных, что соответствует вышеупомянутому результату [6].

Из сравнения станций 11 и 13 можно предполагать, что точность формулы (2) ухудшается для более мутных вод, но в целом получающиеся ошибки можно считать приемлемыми.

Коррекция измеренного на мелководье спектра коэффициента яркости водной толщи на вклад излучения, отраженного от дна

Формула (2) дает возможность решать как прямую, так и обратную задачи. Для решения последней необходимо использовать малопараметрические модели для спектральных зависимостей $\rho_{dp}(\lambda)$, $\rho_B(\lambda)$ и $K_d(\lambda)$.

Спектральных зависимости $\rho_{dp}(\lambda)$ и $K_d(\lambda)$ рассчитываются через показатели поглощения $a(\lambda)$ и обратного рассеяния $b_b(\lambda)$ морской воды [11, 12]:

$$\rho_{dp}(\lambda) = 0.922 \ \pi b_b(\lambda)/a(\lambda); \tag{4}$$

$$K_{d}(\lambda) = (1.04/\cos\theta_{w}) \cdot [a(\lambda) + b_{b}(\lambda)].$$
(5)

Показатели $a(\lambda)$ и $b_b(\lambda)$ представляются в следующем виде:

$$a(\lambda) = a_w(\lambda) + a_g(\lambda) + a_{ph}(\lambda), \tag{6}$$

$$b_b(\lambda) = b_{bw}(\lambda) + b_{bp}(\lambda), \tag{7}$$

где $a_w(\lambda)$ и $b_{bw}(\lambda)$ – известные показатели поглощения и обратного рассеяния чистой морской водой; $a_g(\lambda)$ - поглощение растворенным органическим веществом (POB); $a_{ph}(\lambda)$

- спектральное поглощение пигментами фитопланктона; $b_{bp}(\lambda)$ - показатель обратного рассеяния взвесью.

Спектральная зависимость поглощения POB $a_g(\lambda)$ описывается экспоненциальной зависимостью: $a_g(\lambda) = a_g \exp[-S(\lambda - 443)],$ (8)

где a_g – поглощение желтым веществом на длине волны λ =443нм; *S* – характеризует наклон спектра поглощения желтым веществом (согласно [13], он равен 0.017 при $\lambda \le 500$ нм и 0.011 при $\lambda > 500$ нм).

Поглощение пигментами фитопланктона представляется в виде $a_{ph}(\lambda) = Chl f_{ph}(\lambda)$, где $f_{ph}(\lambda)$ удельное поглощение пигментами, которое задается степенной функцией: $f_{ph}(\lambda) = A(\lambda) \cdot Chl^{-B(\lambda)}$, где A и B - зависящие от длины волны параметры, значения которых приведены в [14]. Концентрация Chl характеризует суммарную концентрацию хлорофилла a и его производных.

Спектральная зависимость обратного рассеяния взвешенными частицами задается степенной функцией $b_{bp}(\lambda) = b_{bp'}(\lambda/555)^{-n}$, где b_{bp} – показатель обратного рассеяния частицами на длине волны 555 нм, *n* характеризует наклон спектральной зависимости $b_{bp}(\lambda)$.

Спектральный показатель отражения от дна можно записать в виде $\rho_B(\lambda) = A f_B^*(\lambda)$, где $f_B^*(\lambda)$ – нормированная при 555 нм спектральная зависимость коэффициента отражения, A – коэффициент отражения, A – коэффициент отражения дна при 555 нм.

Благодаря использованию малопараметрических моделей, решение обратной задачи сводится к определению нескольких неизвестных параметров. Будем считать, что их четыре: концентрация хлорофилла *Chl*, показатель поглощения желтым веществом a_g , показатель обратного рассеяния частицами b_{bp} и коэффициент отражения ото дна *A*. Вообще говоря, неизвестных величин существенно больше: это наклоны *S* и *n* спектральных зависимостей поглощения желтым веществом и рассеяния назад, глубина *H*, спектральная зависимость коэффициента отражения ото дна $f_B^*(\lambda)$, которая зависит от типа дна.

Вопрос о наклонах спектральных зависимостей поглощения желтым веществом и рассеяния назад рассматривался в [15], здесь мы на этом останавливаться не будем. В соответствии с результатами наших исследований, мы приняли для северной половины Каспийского моря

значения S = 0.013 нм⁻¹, n = 0.5.

Глубину H на этом этапе работы будем считать известной; для оценки влияния выбора спектральной зависимости $f_B^*(\lambda)$ расчеты проводились для двух типов дна: водоросли и песок (рис.4).

Нелинейная задача минимизации квадратичной невязки для определения неизвестных параметров a_g , b_{bp} , *Chl* и *A* через значения коэффициента яркости восходящего излучения $\rho(\lambda)$ для шести спектральных каналов SeaWiFS (412, 443, 490, 510, 555, 670 нм) решалась с помощью метода доверительных подпространств [16, 17]. При этом ставилось условие положительности всех искомых параметров, а для показателя отражения дна также задавалась верхняя граница значений $A \leq 1$. После нахождения неизвестных параметров оценивались ошибки аппроксимации [$\rho(\lambda)_{\text{рассч.}} - \rho(\lambda)_{\text{изм.}}$] и находился скорректированный на отражение ото дна спектр коэффициента яркости водной толщи $\rho_{dp}(\lambda)$. Примеры результатов расчетов даны в Таблице 1, где для каждой станции пред-

Тип дна	$ ho(\lambda_i), \%$						Абсолют.	a_g ,	b_{bp} ,	Chl,
	412	443	490	510	555	670	annp., %	м ⁻¹	<i>м</i> ⁻¹	мг∙м ⁻³
Ст.3, 2003, глубина 4 м										
Измерения	2,1	2,8	4,5	6,0	9,3	5,2				9.05
Водоросли	2,0	2,9	4,9	6,0	9,2	5,1	0.18	1.12	0.102	0.92
	2,0	2,9	4,9	5,9	8,3	5,0				
Песок	2,0	2,8	4,9	6,0	9,2	5,1	0.17	1.09	0.097	0.59
	2,0	2,8	4,8	5,8	8,1	4,8				
Ст.11, 2004, глубина 6.5 м										
Измерения	1,3	2,0	3,7	4,3	5,1	0,6				0.56
Водоросли	1,4	2,0	3,7	4,3	5,1	0,6	0.13	0.194	0.010	~0
	1,3	1,8	2,7	2,7	2,7	0,6				
Песок	1,3	1,9	3,7	4,3	5,0	0,6	0.13	0.213	0.011	0.08
	1,3	1,8	2,7	2,8	2,9	0,6				
				Ст.7, 2	006, глу	бина 7 м	AI.			
Измерения	0,9	1,2	2,1	2,5	3,4	0,5				0.84
Водоросли	0,9	1,2	2,0	2,5	3,4	0,5	0.02	0.269	0.009	0.61
	0,9	1,2	1,8	1,9	2,1	0,5				
Песок	0,9	1,2	2,0	2,5	3,4	0,5	0.02	0.265	0.010	1.35
	0,9	1,1	1,7	1,9	2,2	0,5				
				Ст.9, 20	06, глубі	ина 10.5	м			
Измерения	1,3	1,9	3,3	3,3	2,8	0,2				0.18
Водоросли	1,4	1,9	3,2	3,2	2,9	0,3	0.07	0.101	0.004	~0
	1,3	1,7	2,2	1,9	1,6	0,3				
Песок	1,3	1,9	3,3	3,3	2,8	0,2	0.03	0.100	0.004	0.04
	1,2	1,5	2,0	1,8	1,5	0,2]			

Таблица 1. Коррекция спектра коэффициента яркости водной толщи на вклад излучения, отраженного от дна. Корректированный спектр $\rho(\lambda_i)_{dp}$, % выделен полужирным шрифтом (пояснения в тексте)

ставлены спектральные коэффициенты яркости водной толщи, измеренные с помощью плавающего спектрорадиометра, и измеренные концентрации хлорофилла «а»; коэффициенты яркости, рассчитанные с помощью описанного выше алгоритма для двух типов дна (водоросли и песок), и коэффициенты яркости, скорректированные на отражение ото дна (выделены полужирным шрифтом); среднеквадратичные ошибки аппроксимации и рассчитанные значения параметров a_g , b_{bp} и *Chl*. Как видим, ошибки аппроксимации для всех приведенных расчетов не превышают 0.002 (0.2%).

Анализируя данные Таблицы 1, прежде всего отметим, что сама глубина - отнюдь не главный фактор, определяющий влияние отражение ото дна. Из Таблицы 1 можно видеть, что на самой мелководной станции 3, 2003 где глубина 4 м, вклад отражения ото дна не превышает 10-12%, тогда как на станциях 11, 2004 и 7, 2006, где глубины 6.5-7 м, вклад отражения ото дна при 555 нм составляет 35-47%. На ст.9, 2006, где глубина 10.5 м, этот вклад составляет 46%.

Из Таблицы 1 также видно, что вклад отражения ото дна на длинах волн 412-443 и 670 нм для всех станций не превышает 10%, и что выбор спектральной зависимости коэффициента отражения ото дна (водоросли или песок) оказывает слабое влияние на результат. Последнее кажется совершенно удивительным – на рис.4 бросается в глаза резкое различие спектров отражения для песка и водорослей.

Рис. 4. Спектральные зависимости коэффициента отражения ото дна, нормированные на его значение при 555 нм $f(\lambda) = R(\lambda) / R(555)$. 1 – водоросли, 2 – песок, 3 – ил

Объяснение наблюдаемым результатам – спектральные зависимости показателя поглощения морской воды. Поглощение резко возрастает как в синей части спектра - за счет поглощения желтым веществом (см. формулу (8)), так и в красной – благодаря поглощению самой водой. Соответственно выглядит и спектральная зависимость показателя диффузного ослабления $K_d(\lambda)$ – см. формулу (5). Вследствие этого вклад второго слагаемого в (2) «обрезается» в синей и красной частях спектра, т.е. как раз там, где различие спектральных зависимостей коэффициента отражения для песчаного дна и покрытого водорослями наиболее велико (рис.4).

Как видно из Таблицы 1, различие спектральных зависимостей коэффициента отражения дна слабо влияет на значения параметров a_g и b_{bp} , но величины концентрации хлорофилла меняются значительно и они существенно отличаются от измеренных значений *Chl*. Причина этого заклю-

чается в том, что изменение концентрации хлорофилла в водах, где главный вклад в спектральное поглощение вносит «желтое вещество» (типичная ситуация для районов, находящихся под сильным влиянием речного стока) оказывает слабое влияние на формирование спектра яркости.

Оценка биооптических характеристик

Для оценки концентрации хлорофилла будем использовать регрессионный алгоритм, рассчитанный на основе данных натурных измерений в исследуемом регионе. Регрессионный алгоритм также необходим для расчета концентрации взвешенного вещества, которая не определяется при использовании полуаналитического алгоритма. Эту величину будем рассчитывать через значения показателя рассеяния назад взвешенных частиц b_{bp} . Значения b_{bp} , также как показателя поглощения желтым веществом a_g , непосредственно не измерялись, поэтому правильность их расчета можно оценить лишь косвенным образом, сопоставляя рассчитанные величины с измеренными значениями какой-то связанной с ними характеристики.

На рис.5а показана взаимосвязь между рассчитанными величинами a_g (Таблица 1) и измеренными *in situ* величинами показателя ослабления c(530). Сильная корреляция этих величин (квадрат коэффициента корреляции $R^2 = 0.937$) физически объясняются тем, что изменчивость обеих величин определяется одним и тем же фактором – влиянием речного стока.

Аналогичная связь между значениями b_{bp} из Таблицы 1 и величинами c(530) оказывается гораздо более слабой - квадрат коэффициента корреляции R^2 равен лишь 0.502. Однако эта связь заметно улучшается, если использовать значения b_{bp} , рассчитанные посредством упрощенного алгоритма [18] (см. также <u>http://manta.sio.rssi.ru/</u>).

В этом алгоритме для расчета используется отношение нормализованных яркостей $L_{wn}(510)/L_{wn}(555)$ для спектральных каналов SeaWiFS 510 и 555 нм. Нормализованная яркость $L_{wN}(\lambda)$, рассчитываемая по спутниковым данным, связана со спектральным коэффициентом яркости водной толщи $\rho(\lambda)$ следующей формулой [7]:

$$L_{WN}(\lambda) = F_0(\lambda) \ 0.165 \ \rho(\lambda) \ /(1 - 0.497 \ \rho(\lambda)), \tag{9}$$

где $F_0(\lambda)$ - значение солнечной постоянной.

На рис.56 показана взаимосвязь между измеренными *in situ* величинами показателя ослабления c (530) и величинами b_{bp} , рассчитанными посредством упрощенного алгоритма [18] через

Рис. 5. Корреляция между рассчитанными значениями a_g (рис.5а) и b_{bp} (рис.5б) и измеренными величинами показателя ослабления c(530)

величины $\rho(510)$ и $\rho(555)$ с использованием (9). Квадрат коэффициента корреляции R^2 составляет 0.899, относительная ошибка уравнения регрессии c(530) через b_{bp} составляет $\approx 31\%$. С такой точностью можно рассчитывать показатель ослабления c(530) в подповерхностном слое по данным дистанционных измерений b_{bp} для Северного и Среднего Каспия, используя уравнение регрессии:

$$c(530) = 73.8 \cdot b_{bp} + 0.594. \tag{10}$$

Приведенные результаты являются косвенным подтверждением того, что, по крайней мере, относительные изменения величин a_g и b_{bp} оцениваются верно.

Региональный алгоритм для расчета концентрации хлорофилла в Северном и Среднем Каспии основан на данных натурных измерений спектральной яркости излучения, выходящего из водной толщи, посредством плавающего спектрорадиометра и прямых определений концентрации хлорофилла на одновременно отобранных пробах морской воды, выполненных в 2003, 2004 и 2006 гг. Эти данные были предварительно откорректированы на влияние отражение ото дна посредством алгоритма, описанного выше, а затем по откорректированным величинам рассчитано

уравнение регрессии между концентрацией хлорофилла *Chl* и отношением нормализованных яркостей $L_{wn}(510)/L_{wn}(555)$ для спектральных каналов SeaWiFS 510 и 555 нм:

$$Chl = 0.766 \cdot [Lwn(555)/Lwn(510)]^{3.71},$$
(11)

число пар данных n=38, квадрат коэффициента корреляции $R^2 = 0.77$; относительная ошибка порядка 50%. По сравнению с ранее полученным уравнением регрессии, рассчитанным без коррекции на отражение ото дна, коэфициенты регрессии мало изменились (были 0.774 и 3,65), но существенно уменьшились ошибки регрессии (были $R^2 = 0.69$, относительная ошибка около 70%).

Для концентрации взвеси уравнение регрессии представляется в линейном виде:

$$C_{_{636}} = 70.8 \ b_{bp}(555) + 0.365, \tag{12}$$

n=21, R²=0.878; среднеквадратичная ошибка составляет ~0.2 мг/л.

Разброс точек относительно линий регрессии показан на рис.6а, б. Величины ошибок можно

Рис. 6. Разброс точек относительно линии регрессии для расчета концентрации хлорофилла (а) и взвеси (б) для северной половины Каспийского моря

считать вполне приемлемыми, учитывая, в частности, то, что стандартный алгоритм расчета концентрации хлорофилла по данным спутниковых сканеров цвета может завышать концентрацию хлорофилла более чем на порядок.

Заключение

Как отмечалось во Введении, в настоящей работе предполагается, что атмосферная коррекция успешно выполнена. В число стандартных продуктов 2-го уровня, вычисляемых в результате атмосферной коррекции данных спутниковых сканеров цвета SeaWiFS и MODIS, входят яркости нормализованные соответствующих спектральных $L_{WN}(\lambda_i)$ для каналов (http://seadas.gsfc.nasa.gov/PRODUCTS/). Используя (9), можно рассчитать спектральные величины коэффициента яркости водной толщи $\rho(\lambda_i)$ и с помощью разработанного нами алгоритма выполнить коррекцию величин $\rho(\lambda_i)$ на вклад отраженного ото дна излучения в случае мелководья. Значения глубины Н можно задавать по данным батиметрических карт – поскольку минимальный размер пикселя 1 км, то вряд ли можно найти более точные значения при обработке спутниковых данных. Выбор типа дна, как было показано выше, для спектральных каналов SeaWiFS и MODIS существенного влияния на результат не оказывает. При отсутствии информации о типе дна можно рекомендовать для определенности выбирать спектральную зависимость коэффициента отражения дна для песка – при осреднении по большой площади и комбинированном типе дна яркий песок будет давать основной вклад в среднее значение коэффициента отражения.

Главная проблема при практическом применении разработанного алгоритма для обработки спутниковых данных – это атмосферная коррекция. На наш взгляд, перспективным представляется подход [19], который дает возможность разработки регионального алгоритма атмосферной коррекции, учитывающего специфику мелководных районов.

Работа выполнена при финансовой поддержке РФФИ (гранты № 07-05-00799а и № 06-07-03012–ОФИ-Ц), а также Программы фундаментальных исследований №17 Президиума РАН.

Литература

1. Lesser M.P., Dubinski Z., and Lewis M. (editors) Light in shallow waters // Limnology and Oceanography, 2003. Vol. 48(1, part 2). P.323-585.

2. Артемьев В.А., Буренков В.И., Вортман М.И. и др. Подспутниковые измерения цвета океана: новый плавающий спектрорадиометр и его метрология // Океанология. 2000. Т. 40. №1. С. 148-155.

3. Artemiev V.A., Taskaev V.R., Burenkov V.I., Grigoriev A.V. A multi-purpose compact transmissometer // Proceedings of III International Conference "Current Problems in Optics of Natural Waters" (ONW'2005). St.Peterburg. 2005. P.170-175.

4. *Khrapko A.N., Kopelevich O.V., Burenkov V.I. et al.* New instrument for measuring surface and underwater irradiances // Proceedings of IV International Conference "Current Problems in Optics of Natural Waters (ONW'2007)". Nizhny Novgorod. 2007. P.271-275.

5. Буренков В.И., Васильков А.П., Романов А.А. Перспективы использования дистанционных оптических методов для индикации скоплений придонных водорослей // Сб. "Дистанционные методы мониторинга промысловых районов океана". 1998. С. 131-139.

6. *Maritorena S., Morel A. and Gentili B.* Diffuse reflectance of oceanic shallow waters: Influence of water depth and bottom albedo // Limnology and Oceanography, 1994. Vol.39. P.1689-1703

7. Lee Z., Carder K.L., Mobley C.D. et al. Hyperspectral remote sensing for shallow waters. 1. A semianalytical model // Appl. Opt. 1998. V. 37. № 27. P. 6329-6338.

8. *Sheberstov, S.V., Nabiullina, M.V., Lukyanova, E.A.* Numerical modeling of radiative transfer in ocean-atmosphere system with wind-roughened surface // Proceedings of the II International Conference "Current Problems in Optics of Natural Waters". St. Petersburg. 2003. P.90 95.

9. Копелевич О.В., Шеберстов С.В., Буренков В.И. и др. Оценка объемного поглощения солнечного излучения в водной толще по спутниковым данным // Фундаментальные исследования океанов и морей, книга 1. М.: Наука. 2006. С.109-126. 10. *Lyzenda D.R.* Passive remote sensing techniques for mapping water depth and bottom features // Appl. Opt. 1978. Vol.17. P.379-383.

11. Morel A., Gentili B. Diffuse reflectance of oceanic waters. II. Bidirectional aspects // Appl. Opt. 1993. V. 32. P. 6864-6879.

12. Gordon H.R. Can the Lambert-Beer law be applied to the diffuse attenuation coefficient of ocean water? // Limnol. Oceanogr., 1989. Vol.34. No. 8. P. 1389-1409.

13. Копелевич О.В., Люцарев С.В., Родионов В.В. Спектральное поглощение света «желтым веществом» океанской воды // Океанология. 1989. Т. 29. № 3. С. 409-414.

14. *Bricaud A., Babin M, Morel A, Claustre H.* Variability in the chlorophyll-specific absorption coefficients of natural phytoplankton: Analysis and parameterization // J. Geophys. Res. 1995. Vol. 100. No. C7. P. 13321-13332.

15. Буренков В. И., Ведерников В. И., Ершова С. В и др.. Использование данных спутникового сканера цвета океана SeaWiFS для оценки биооптических характеристик вод Баренцева моря // Океанология. 2001. Т. 41, № 4. С. 485-490.

16. Coleman T.F. and Li Y. An Interior, Trust Region Approach for Nonlinear Minimization Subject to Bounds // SIAM Journal on Optimization, 1996. Vol. 6. P.418-445.

17. Coleman T.F. and Li Y. On the Convergence of Reflective Newton Methods for Large-Scale Nonlinear Minimization Subject to Bounds // Mathematical Programming. 1994. Vol. 67, No. 2. P.189-224.

18. Буренков В.И., Ершова С.В., Копелевич О.В. и др. Оценка пространственного распределения взвеси в водах Баренцева моря по данным спутникового сканера цвета океана SeaWiFS // Океанология. 2001. Т. 41, № 5. С. 653-659.

19. Kopelevich O.V., S.V. Sheberstov, S.Vazyulya et al. New approach to atmospheric correction of satellite ocean color data // Proc. SPIE. Vol.6615. 661502 (Apr.13, 2007).