Основные направления развития дистанционных методов изучения лесов и оценки их состояния в России

В.И. Сухих

Центр по проблемам экологии и продуктивности лесов РАН 117997, Москва, ул. Профсоюзная, 84/32 E-mail: sukhikh@cepl.rssi.ru

В конце 2007 г. в России был разработан и введен в действие новый Лесной кодекс в котором в качестве основополагающих задач лесного хозяйства определены: устойчивое управление лесами, сохранение биологического разнообразия, сохранение и повышение ресурсных, защитных и иных функций лесов, их рациональное использование, охрана, защита и воспроизводство с учетом глобального экологического значения лесных экосистем.

Для обеспечения решения этих задач предусматривается широкое использование космических и авиационных средств дистанционного зондирования при проведении государственной инвентаризации лесов; выполнении комплекса лесоустроительных и обследовательских работ с составлением картографической продукции различных масштабов и тематического содержания; осуществлении мероприятий по охране и защите лесов, ведении различных видов лесного мониторинга (лесопожарного, лесопатологического, оценки состояния лесопользования, контроля за антропогенной деятельностью в лесу и др.), а также при контроле федеральными органами исполнительной власти за результативностью деятельности органов лесного хозяйства субъектов федерации.

Выполнение намеченного потребует применения материалов космических и авиационных съемок нового поколения различного пространственного и спектрального разрешения, развитие методов обработки и использования съемочной информации, создание и развитие федерального и региональных центров мониторинга и соответствующей подготовки специалистов.

Дистанционные средства и методы получения информации о лесах и решения на ее основе различных научных и практических задач лесоведения и лесного хозяйства применяются с начала 20-х гг. прошлого столетия. Материалы космических съемок для изучения лесов и оценки их состояния начали применяться в 1970-1975 гг. За этот период в России, других странах постсоветского пространства и Мира выполнен колоссальный объем исследовательских и отраслевых работ по данной проблеме, результаты которых отражены в многочисленных отчетах о научно-исследовательских и опытно-производственных работах и публикациях. Поэтому очень важно, чтобы при планировании и выполнении исследований и разработке новых и усовершенствованных технологий выполнения тех или иных видов работ были востребованы в полной мере результаты работ предыдущих поколений исследователей.

Конечно, в современном Мире наука и техника развиваются исключительно быстрыми темпами. Это полностью относится и к проблеме, связанной с получением информации о земном покрове и природных ресурсах Земли дистанционными средствами. Постоянно совершенствуются съемочные системы, повышаются их качественные характеристики, совершенствуются и развиваются программные продукты и методы обработки информации. Однако, несмотря на это, роль человеческого фактора, исследователя и организатора производства, имеет и на современном этапе определяющую роль в выборе направлений исследований и сферы применения тех или иных средств получения информации для решения конкретных задач. Все это непосредственно относится к тем проблемам, которые необходимо решить ученым и специалистам при реализации задач лесного хозяйства и лесного сектора экономики России по устойчивому лесоуправлению.

Для решении перечисленных ранее задач лесного хозяйства необходимо получение комплекса разнообразной, в некоторых случаях исключительно детальной, информации о лесах и проте-

кающих в них процессах и явлениях с заданной точностью и оперативностью. При этом следует учитывать создавшийся в отрасли дефицит в ученых и специалистах, За годы «перестройки» экономики страны лесное хозяйство утратило, как минимум, две трети специалистов – полевиков, работавших ранее в лесоустройстве, в подразделениях Авиалесоохраны, а также ученых в отраслевых научно-исследовательских организациях. Разрушена и система управления лесным хозяйством на муниципальном уровне. Сейчас в лесном хозяйстве практически нет ни одного даже небольшого исследовательского специализированного структурного подразделения, которое занималось бы проблемой, связанной с дистанционными методами. В отрасли не осталось даже отдельных ученых, которые бы целенаправленно продолжали исследования в этой области знаний, хотя ранее в СССР лесное хозяйство и лесная наука занимали передовые позиции в области разработок и применения дистанционных методов.

В связи с изложенным перед отраслью неминуемо станет задача по привлечению к выше названным разработкам ученых и специалистов, работающих в Российской академии наук и в других, в том числе коммерческих организациях, которые, как и руководители отраслевых подразделений, не всегда четко понимают отраслевые задачи и требования к разработкам и насколько те или иные средства дистанционного зондирования могут обеспечить необходимую точность получаемой информации.

Рассмотрим эту проблему на примере контроля за порядком лесопользования и выявлением незаконных сплошных рубок, которая находится сейчас «на слуху» у всех и которая в принципето вроде исключительно простая: нужно выявить «пятно» среди леса, которое появилось после вырубки древостоя. Действительно, обнаружить места сплошнолесосечных рубок по разновременным космическим снимкам довольно просто. Но задача стоит не только в выявлении вырубки, но и в оценке с заданной точностью ее параметров: ширины, длины, площади и определении ряда других характеристик вырубки и смежных с ней древостоев. А точность, в свою очередь, зависит от площади и параметров (длины, ширины) вырубки и спектрального и пространственного разрешения применяемых съемочных материалов, а также сезона съемки. В лесном хозяйстве принято, что площадь таксационного выдела при лесоустройстве должна быть определена с ошибкой не превышающей 2 %, а длина линий – 1/200 – 1/300. При ошибке с большими величинами органы юстиции могут не принять претензии лесного хозяйства к лесопользователям по возмещению нанесенного ущерба.

Сейчас на конференциях, в публикациях отечественных и зарубежных исследователей, встречаются утверждения, что за порядком лесопользования можно следить по космическим снимкам, получаемым с различных космических аппаратов (КА), в том числе и Modis с разрешением 250 – 500 м. Но данные о том, какого минимального размера вырубка может быть выявлена и с какой ошибкой могут быть определены ее параметры по тем или иным съемочным материалам в большинстве публикаций, как правило, отсутствуют. Поэтому следует разобраться, с какими же по размеру вырубками приходится сталкиваться исполнителям работ, и с какой точностью могут быть измерены их параметры по космическим снимкам различного пространственного разрешения?

По данным Рослесхоза основные объемы заготовок древесины в России в настоящее время сосредоточены в Европейско-Уральской части страны, преимущественно в Северо-Западном, Центральном и Приволжском федеральных округах, лесистость которых соответственно 52.3; 34,7 и 36.5%. Данная тенденция сохранится и в дальнейшем, по крайней мере, на среднесрочную перспективу – до 2020 – 2025 гг. Каков же размер вырубок в этих регионах? Возьмем в качестве примера республику Марий-Эл, лесистость которой составляет 55.6%, что превышает среднюю величину лесистости всех трех федеральных округов. Ширина сплошных вырубок в условиях республики варьирует в пределах от 50 до 200 м, а их площадь – от долей га до 10-20 га.

Для выявления средних показателей размеров вырубок по Республике Марий-Эл были проанализированы материалы отвода и таксации 1484 лесосек за период с марта 2005 года по март 2006 на общей площади 8008,5 га [1]. Из распределения вырубок по площади, представленного на рис. 1, видно, что площадь 2/3 вырубок не превышают 5 га. Это характерно и для других регионов, в т.ч. и расположенных восточнее Урала, поскольку рубки ведутся в зоне имеющихся лесовозных дорог, где леса интенсивно эксплуатировались в последние 50 лет и эксплуатационный фонд деконцентрирован.

В табл. 1 и 2 приводятся данные экспериментальных исследований по оценке точности определения линейных и площадных параметров вырубок по материалам дистанционных съёмок, полученным различными съемочными системами применительно к условиям Приволжского и Центрального федеральных округов [1].

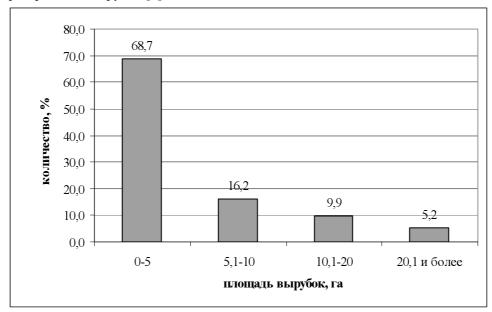


Рис. 1. Распределение сплошнолесосечных вырубок по их площади Проведен ряд исследований точности определения параметров [1]

Таблица 1. Систематические (т) и случайные (S) ошибки (%) измерения по аэрокосмическим изображениям параметров вырубок при их различной величине

Источники ин-	Пространст-	Ширина (длина) лесосеки, м					
формации	венное разреше-	50 и ме	нее	Боле	е 250 м		
	ние (R), м	m	S	m	S		
Аэрофотоснимки	1	1,1	±4,7	-0,5	±1,3		
KA Ikonos	1	-1,2	±5,0	-0,7	±1,4		
KA IRS	5.8	-0,3	±9,0	-0,8	±2,5		
KA Landsat (pan)	14.25	-8,8	±16,9	-3,7	±4,3		

Таблица 2. Значения систематических и случайных ошибок измерений площадей вырубок по аэрокосмическим изображениям

Источники инфор-	Пространственное	Систематическая	Стандартное
мации	разрешение, м	погрешность, %	отклонение, %
Аэрофотоснимки	1	+0,3	±4,6
KA Ikonos	1	- 2,3	±4,6
KBP	2	+7	±10
KA IRS	5,8	-1,9	±8,9
KA Landsat (pan)	14,25	- 4	±14
MK-4M	12-20	-10	±16
KA SPOT	20	-2	±11
KA Landsat	28,5	-5	±12

Наблюдаемые систематические погрешности в большинстве случаев отрицательные, что свидетельствует о некотором систематическом занижении площадей вырубок при дешифрировании. Спектрозональная съёмка является более предпочтительной и позволяет получать более точные результаты. При использовании всех типов космических изображений систематическая погрешность определения параметров лесосек и стандартные отклонения с увеличением размеров вырубок уменьшаются.

Приведенные данные позволяют считать, что если при контроле за порядком лесопользования необходимо с высокой точностью определить параметры и площади каждой отдельно взятой вырубки, то в этом случае следует использовать космические изображения с пространственным разрешением 1-2 м. Если же требуется выявить лишь пространственное размещение мест рубок за какой-либо период и определить их суммарную площадь, то в этом случае возможно применение космических изображений с меньшим пространственным разрешением типа IRS, Landsat, SPOT, но ни в коем случае изображений типа Modis. Если же кроме определения параметров вырубки требуется оценить ее состояние (наличие и характер недорубов, подроста, брошенной древесины, состояния почвенного покрова и пр.), то в этом случае на современном этапе альтернативы сверх-крупномасштабной аэросъемке, проводимой в дополнение к космческой съемке, нет.

Очень осторожно следует подходить к выбору съемочных материалов и при осуществлении лесопожарного и лесопатологического мониторингов в тех случаях, когда требуется не только выявить координаты и площадь свежего пожарища или поврежденного вредителями насаждения, но и оценить степень повреждения насаждений огнем или насекомыми – вредителями и состояние сохранившихся в пределах площади пожарища (поврежденного лесного массива) древостоев. И в этом случае проблема может быть решена лишь на основе дешифрирования высокоинформативных съемочных материалов, возможно с выборочными аэровизуальными или наземными обследованиями. Это сложные технологические задачи и нельзя к ним подходить упрощенно.

Еще более сложные задачи предстоит решать лесоустроителям и подразделениям, которые будут на регулярной основе выполнять работы по государстветенной инвентаризации лесов. В частности, при обсуждении проекта методики государственной инвентаризации лесов неоднократно высказывалось со стороны отдельных исследователей о возможности применения для стратификации и картографирования территории лесного фонда и в других целях материалов космических съемок типа Modis.

При лесоустройстве и государственной лесоинвентаризации необходимо определять по космическим изображениям, или по материалам аэрофотосъемки, или по данным наземных работ: категорию земель (лес, категории не покрытых лесом и нелесных земель), преобладающую и составляющие древесные породы в каждом выделенном участке (точке наблюдения), класс возраста, полноту (густоту), высоту и толщину деревьев, запас древесины и ее качественные характеристики и пр. Составляемые при этом карты, если это предусмотрено, должны отражать реальные характеристики лесов, а не только их обобщенные спектральные характеристики верхнего полога лесных формаций, которые во многих случаях не имеют ничего общего с реальной структурой лесов [3, 4].

Не только изображения Modis,но и SPOT и Landsat далеко не во всех случаях обеспечивают получение надежной информации [2-5]. Обычно, когда речь идет о структуре наших сибирских и северо-восточных лесов, то часто говорят, что это простые леса, с небольшим количеством про-израстающих в них пород. Однако это далеко не так. Для них характерна исключительно сложная мозаичная структура, наличие редколесий, марей, которые порой очень сложно расчленить на отдельные выделы и протаксировать даже при натурной таксации с использованием крупномасштабных аэроснимков.

В качестве одного из примеров этому могут послужить исследования зональных изображений с R=20 м, полученных на тестовый участок, расположенный в Усольском лесхозе Красноярского края в августе многозональным сканером HRV (КА SPOT) в трех спектральных диапазонах: 0,50-

0,59; 0,61-0,68 и 0,78-0,91 мкм зоны спектра. Кластерный анализ структуры изображения проводился с помощью самоорганизующейся нейронной сети Кохонена SOM (Self organizing map). Для кластеризации использовано пространство признаков, которое включает три компоненты – средние яркости пикселов в составе выделов в каждом из трех спектральных каналов. В результате классификации получены восемь классов, которые представлены в табл. 3 [2].

Таблица 3. Распределение выделов тематических классов по кластерам полученным с помощью самоорганизующейся нейронной сети Кохонена

No॒	Тематические классы	Кластеры						Σ		
		1	2	3	4	5	6	7	8	
1	Свежие вырубки	11	0	0	0	0	1	0	0	12
2	Хвойные I кл.возраста.	0	2	9	4	6	0	3	0	24
3	Хвойные II кл.возраста	1	3	1	8	0	1	2	0	16
4	Лиственные І кл.возр.	0	0	0	0	0	1	1	0	2
5	Лиственные II кл.возр.	0	5	4	1	4	7	4	1	26
6	Лиственные III кл.возр.	3	3	4	12	5	1	0	1	29
7	Лиственные IV кл.возр	0	0	6	7	0	0	0	0	13
8	Зарастающие вырубки	0	5	6	0	12	18	10	12	63
	Всего	15	18	30	32	27	29	20	14	185

Результаты классификации свидетельствуют о близости спектральных характеристик полученных классов, что является причиной их значительного перепутывания. Анализ таксационных данных для выделов, описанных в материалах лесоустройства как хвойные насаждения I и II классов возраста, показал, что во многих случаях эти выдела представлены лиственно-хвойными смешанными древостоями с участием лиственных пород в составе насаждений до 60%. Это обусловлено хозяйственными требованиями, реализованными в технологии лесоустройства. В результате выдел (участок), в котором доля хозяйственно ценной породы, в данном случае пихты (ели), составляет всего 40%, а доля лиственных пород достигает 60%, тем не менее, относится к группе хвойных насаждений. Кроме того, морфологические особенности верхнего полога хвойнолиственных молодняков, да и насаждений более старших возрастов таковы, что конусовидные кроны пихты и ели маскируются кронами лиственных пород, которые опережают хвойные породы по темпам роста их в высоту и по размерам крон. В результате этого, несмотря на то, что по данным лесоустройства молодняк считается хвойным древесный полог на аэрокосмических снимках представлен в основном кронами лиственных деревьев. Учитывая это, путем объединения близких из них, были образованы пять базовых классов (см. табл. 4).

Таблица 4. Результаты распознавания по снимкам SPOT пяти тематических классов

Тематические классы		Результаты классификации,					
	1 2 2 4 5						
1 C	100	0	0	0	0	100	
1 - Свежие вырубки	100	U	U	0	U	100	
2 - Хвойные и лиственные насаждения I и II классов							
возраста, а также зарастающие вырубки	0	81,5	13,9	0	4,6	100	
3 - Лиственные насаждения III и IV классов возраста	0	30	50	10	10	100	
4 - Хвойные насаждения старше 40 лет	0	20	0	60	20	100	
5 - Лиственные насаждения старше 40 лет	0	31,6	21,1	10,5	36,8	100	

Результаты укрупнения классов увеличивают их разделимость. Дальнейшее укрупнение классов несколько повышает точность классификации насаждений. Однако даже группировка насаж-

дений, приведенная в табл. 4, излишне группа и точность ее недостаточна для решении задач лесоустройства и государственной инвентаризации лесов [2].

Проведенные исследования в Жиганском лесхозе Республики Якутия Саха с использованием космических изображений, полученных КА Landsat, показали большую сложность автоматической классификации земель лесного фонда по категориям и разделения покрытых лесом земель по классам насаждений. В частности, редины перепутываются с марями, низкополнотные насаждения лиственницы, а они там преобладают, с рединами, ерники – с болотами и ивняками и т.п.

Изложенным мы подчеркиваем, что леса и земли лесного фонда – исключительно сложный объект для дешифрирования. Однако при решении задач лесоустройства, государственной инвентаризации лесов, осуществлении различных видов мониторингов, многоцелевом исследований лесов альтернативе применения в качестве их технической основы материалов аэрокосмических съемок нет. Они должны находить все более широкое применение и решать углубленный перечень задач. Но для этого необходимо при решении каждой конкретной задачи обоснованно подходить как к выбору материалов дистанционных съемок по пространственному и спектральному разрешениям, так и к методам интерпретации. При решении обзорных задач могут с успехом применяться изображения низкого и среднего пространственного разрешения. Там же, где нужна детальная информация, должна применяться информация высокого и сверхвысокого пространственного разрешения, тем более что сегодня выбор ее достаточно широк.

В настоящее время исследователи в значительной части свои усилия сосредотачивают на обоснование направлений возможного использования аэрокосмической информации в лесном хозяйстве, демонстрируя это теми или иными примерами, повторяя в основном, хотя иногда и на новом качественном уровне, исследования 70-80-х гг. прошлого столетия. Однако в крайне ограниченном объеме проводятся работы по совершенствованию методов лесного дешифрирования в увязке с углубленным изучением структуры лесов, и моделированием таксационных и дешифровочных характеристик лесов. Полагаем, что этому направлению должен быть отдан в будущем приоритет, ибо от этого зависит успешность и широта применения дистанционных методов в лесном хозяйстве.

Литература

- 1. Ануфриев М.А. Совершенствование мониторинга лесопользования на основе ма ериалов космических съёмок в условиях Республики Марий Эл. Автореферат диссертация на соискание учёной степени кандидата сельскохозяйственных наук. Йошкар-Ола, 2007, 25 с.
- 2. *Бутусов О.Б.*, *Жирин В.М.*, *Сухих В.И.*, *Шаталов А.В.* Оценка по данным космических съемок крупномасштабных изменений в леном фонде, связанных со временным обезлесиванием покрытых лесом земель // Исследование Земли из космоса, 2005. №2. С. 67–75.
- 3. *Сухих В.И*. Функциональная структура космического сегмента мониторинга лесов России // Исследование Земли из космоса, 2001. №3. С. 61–76.
- 4. *Сухих В.И.* Аэрокосмические методы в лесном хозяйстве и ландшафтном строительстве. Учебник для вузов. Йошкар-Ола, 2005. 382 с.
- 5. Сухих В.И., Жирин В.М. Применение сканерных космических снимков при инвентаризации лесов. В кн.: Дистанционные методы в лесоустройстве и учете лесов. Приборы и технологии: Материалы Всероссийского совещания-семинара с Международным участием. 28 сентября-1 октября 2005 г., г. Красноярск. Институт леса СО РАН, 2005. С.99-102.