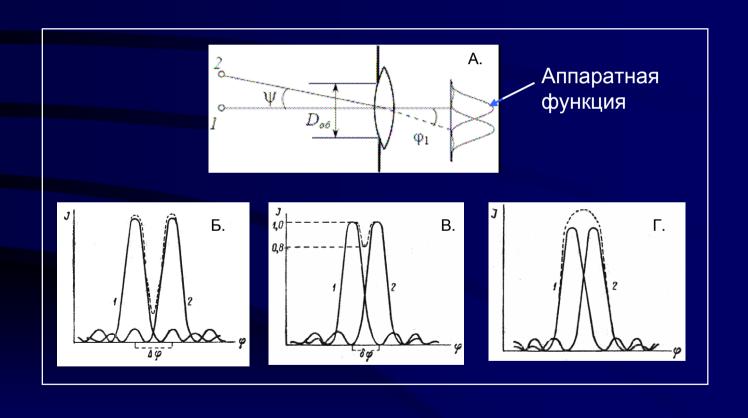
Оценка эффективности алгоритмов синтезирования апертуры сканирующего радиометра

Горный В.И., Латыпов И.Ш.

Учреждение Российской академии наук Санкт-Петербургский научно-исследовательский центр экологической безопасности РАН (НИЦЭБ РАН)

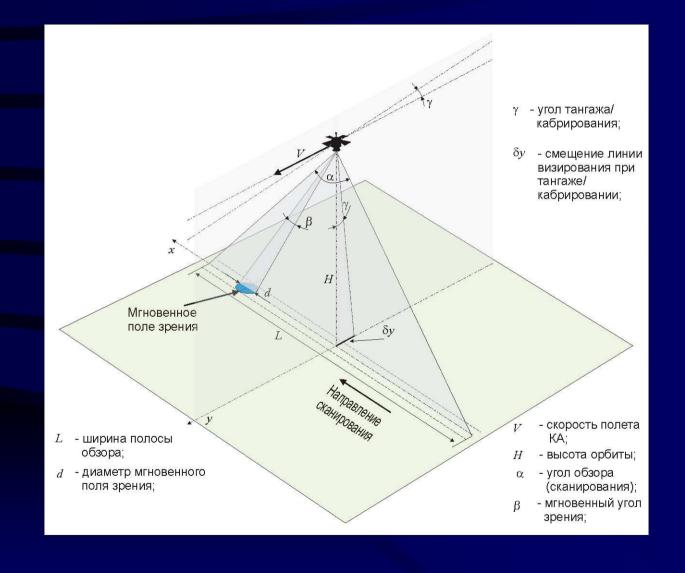

197110, Санкт-Петербург, ул. Корпусная, 18

E-mail: v.i.gornyy@ecosafety-spb.ru

Тел.: (812) 230-78-34

Проблема повышения разрешения для спутниковых систем ДЗЗ ИК-теплового и СВЧ диапазонов

Условие разрешения двух точечных объектов


Ухудшение разрешения при возрастании длины волны регистрируемого излучения

Критерий Рэлея:

 $\sin \Delta \varphi = 1.22 \ \lambda/D$

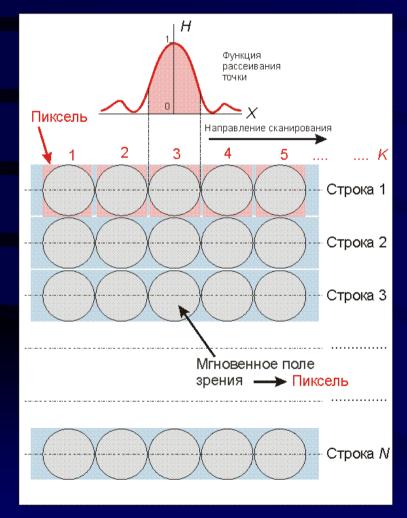
где: $\Delta \varphi$ – разрешение; λ - длина волны; D – диаметр (апертура) объектива;

Сканирование оптико-механическим радиометром

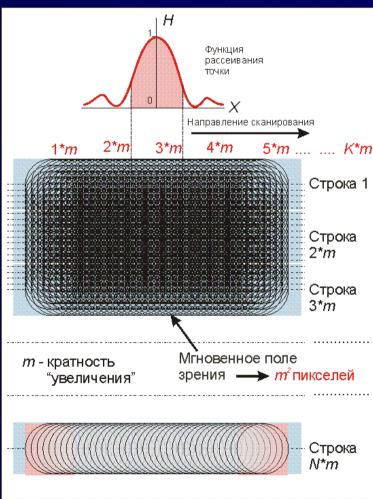
Регистрируемый сканирующим радиометром сигнал

$$F = X * H$$

F — регистрируемое прибором изображение;


X- реальное изменение регистрируемой характеристики;

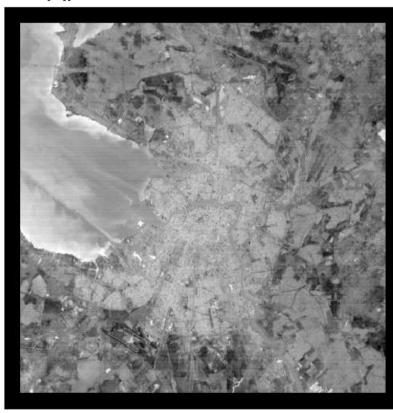
H — аппаратная функция (АФ) прибора;

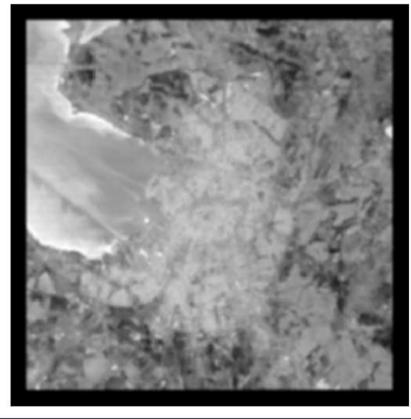

* - знак свертки.

Схемы сканирования

Стандартная

С повышенной частотой считывания



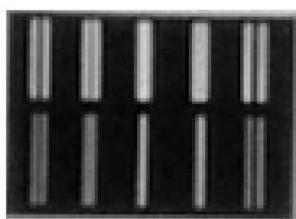

Тепловые изображения Санкт-Петербурга

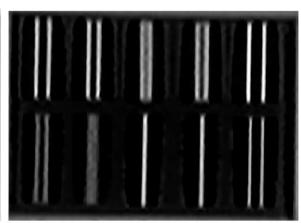
Исходное ночное. Размер МПЗ на местности 90 *м* (данные спутника Terra(ASTER)

Модель изображения с 7-кратным переналожением при размере МПЗ на местности 630 *м* и АФ в форме кривой Гаусса.

А. Б.

Экспериментальное доказательство существования эффекта

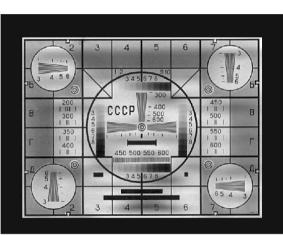

Мира на экране монитора


Исходная

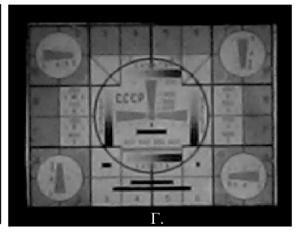
Изображение миры при стандартной съемке Результат деконволюции

В.

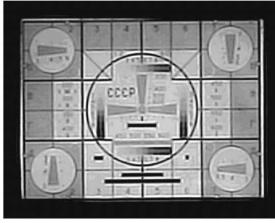
а. Промежуток между парами линий, мм: б.



Реальный объект


Исходная мира

Изображение миры при стандартной съемке Результат деконволюции


Α.

Б.

В.

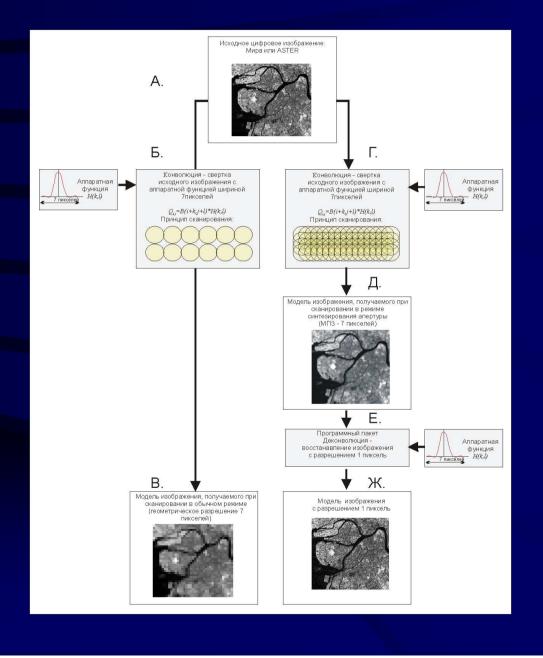
Аппаратная функция

Оптический стенд

1. Зеркальный коллиматор. 2. Мира. 3. Лампа подсветки. 4. Поворотное зеркало. 5. Ноутбук Sony VAIO FS415. 6. Фотоаппарат Canon G6. 7. Микрометрические винты (шаг 0.01 мм).

Требования к КА для установки сканирующего радиометра с синтезированной апертурой

Технические характеристики основных спутниковых съемочных систем ИК-теплового диапазона спектра электромагнитных волн


Сканер/ спутник	Высота орбиты, <i>км</i>	Ширина полосы съемки, <i>км</i>	Геометр. разрешение на местности, м
AVHRR/ NOAA	833	2700	1090
MODIS/ Terra-Aqua	705	2330	1000
TM / Landsat 5	705	185	120
ETM+ / Landsat 7	705	183	60
ASTER/ Terra	705	60	90

Задача: оценить требования к стабилизации КА, предназначенного для установки сканирующего радиометра с синтезированной апертурой (СР СА)

Исходные характеристики КА и СР СА

* Характеристика	Ед. изм.	Значение
Высота орбиты, Н	км	700
Скорость движения KA вдоль орбиты, V	км/с	7,51
Скорость движения на поверхности Земли проекции КА вдоль направления полета	км/с	6,77
Мгновенный угол зрения, $oldsymbol{eta}$	мкрад	900
Диаметр мгновенного поля зрения на поверхности Земли, d	М	630
Ширина полосы съемки/ Угол обзора, α	км/ град	2300/ 116

Методика численного эксперимента

Алгоритмы деконволюции

Метод последовательного проектирования с составным шагом (МПП)

Предназначен для приближенного решения системы уравнений путем замены их системой неравенств.

X * H

Предназначен для приближенного решения системы уравнений X*H=F путем замены его системой неравенств $|X*H-F|<\varepsilon$. Тогда для каждой точки матрицы F можно выписать двойное неравенство $f(i,j)-\varepsilon<\sum x(k,l)h(i+k,j+l)< f(i,j)+\varepsilon$.

Вычислительная∙схема∙МПП∙выглядит∙следующим∙образом:•¶

$$x_{n+1}(k,l) = x_n(k,l) + \delta d\widetilde{h}(i+k,j+l), \P$$

где· \widetilde{h} ·-··коэффициенты·матрицы· H ,··нормированной·таким·образом,·что· $\sum h(i,j)$ = 1,··· $\widetilde{f}(i,j)$ ·

- элементы нормированной матрицы F, $d = \sum x(k,l)\widetilde{h}(i+k,j+l) - \widetilde{f}(i,j)$, а

$$S = \begin{cases} 1, & \text{if } d \ge \varepsilon \\ 0, & \text{if } d < \varepsilon \end{cases} \dots \P$$

Алгоритм ван Циттерта (van Cittert)

Представляет собой реализацию метода простой итерации для решения систем линейных уравнений X*H=F

X- матрица действительного изображения (неизвестная);

F - матрица исходного изображения, полученная в результате космической съемки;

H - матрица, описывающая аппаратную функцию объектива.

Если решение, полученное на -ой итерации обозначить, X_n ,

тогда итерационная схема ван Циттерта записывается как $X_{n+1} = X_n + F - X_n * H$;

Модификация: $X_{n+1} = X_n + \alpha(F - Xn * H);$

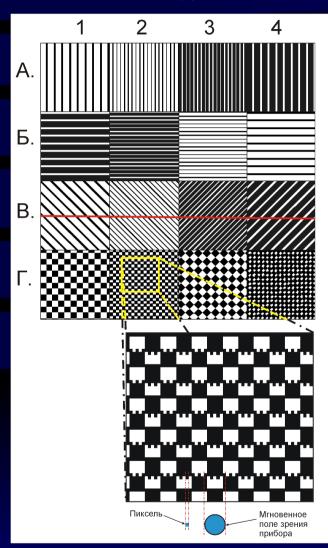
Где: α - регулирует скорость сходимости и повышает устойчивость.

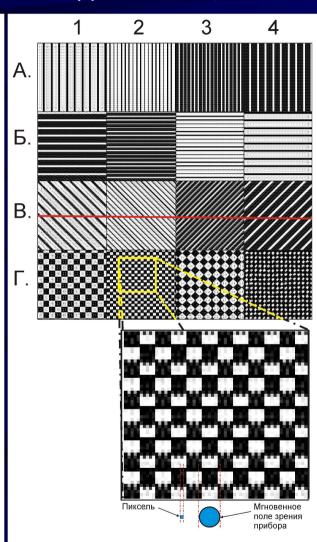
 $X_{n+1} = X_n \cdot F / (X_n * H)$

Алгоритм Голда (Gold)

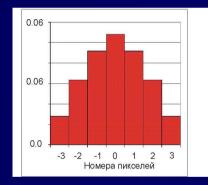
Решает ту же задачу, что и алгоритм ван Циттерта.

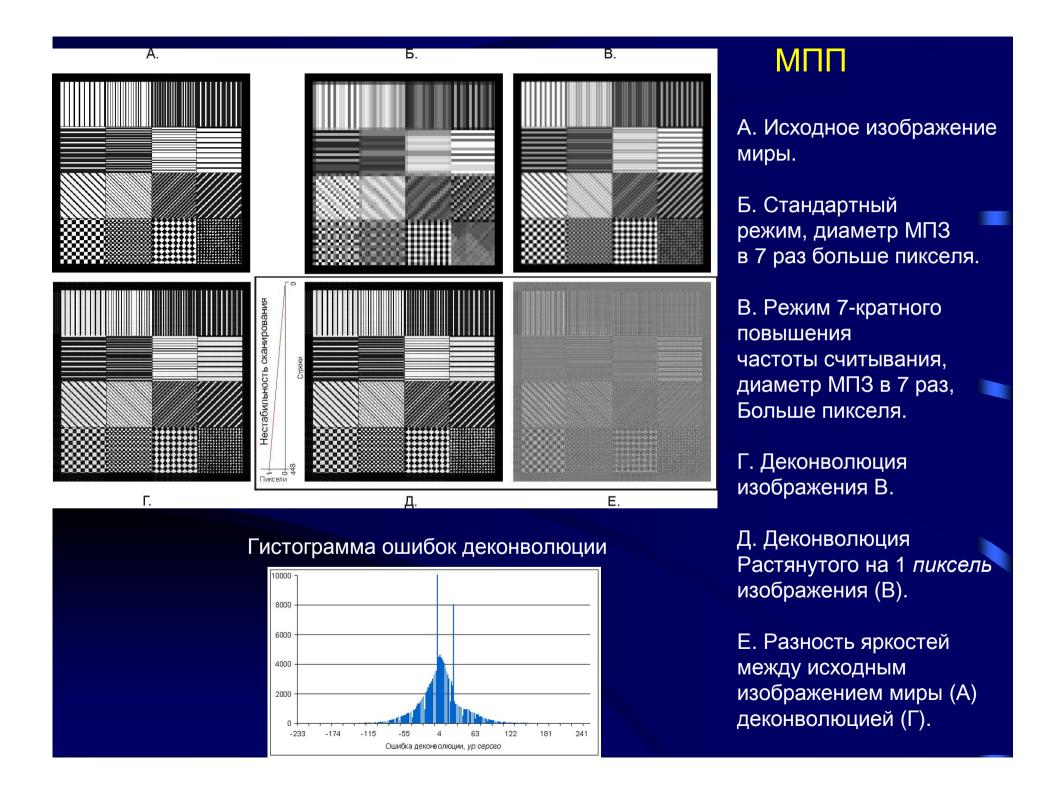
В обозначениях предыдущего пункта, схема записывается в виде:

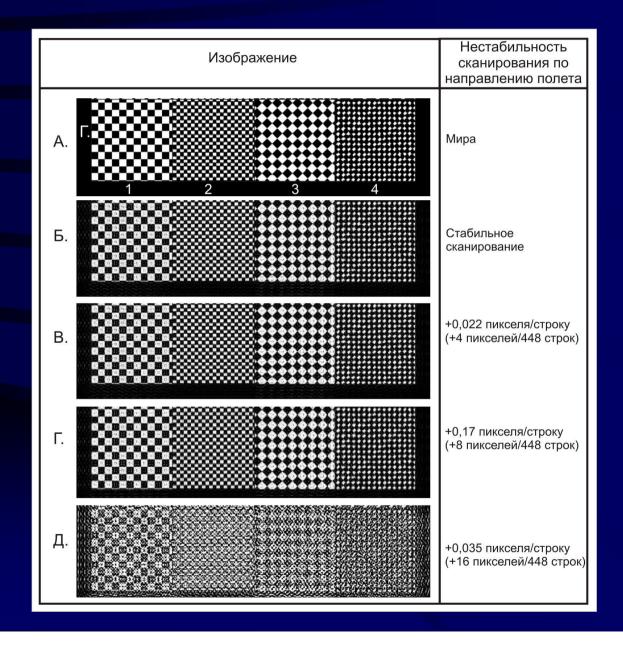

$$X_{n+1} = X_n F / (X_n * H)$$


Преимущество – более быстрая сходимость.

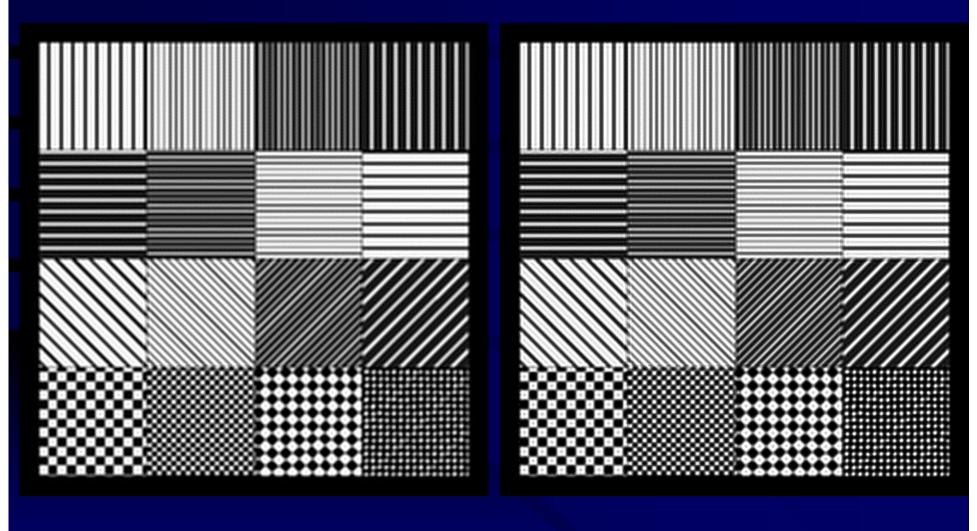
Штриховая мира


Исходная

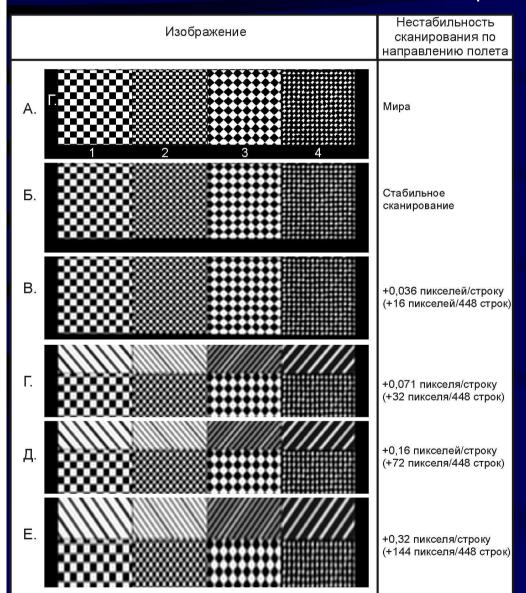

Деконволюция МПП

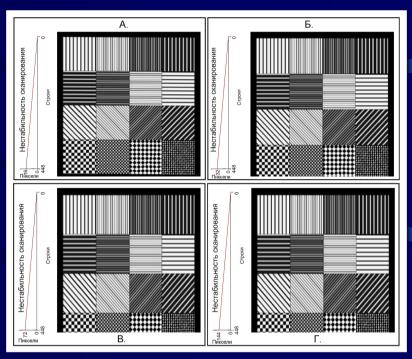


Аппаратная функция


Ошибки деконволюции при растяжении изображения МПП

Деконволюция


Ван Циттерт


Голд

Ошибки деконволюции при растяжении изображения

Ван Циттерт

Температура, С

Полутоновая мира Алгоритм МПП

А. Исходное изображение миры.

- Б. Стандартный режим, диаметр МПЗ в 7 раз больше пикселя.
- В. Режим 7-кратного повышения частоты считывания, диаметр МПЗ в 7 раз, Больше пикселя.
- Г. Деконволюция изображения В.
- Д. Деконволюция Растянутого на 1 *пиксель* изображения (В).
- Е. Разность яркостей между исходным изображением миры (A) деконволюцией (Г).

Гистограмма ошибок деконволюции

Результаты численного эксперимента

- 1. Метод МПП позволяет восстановить изображение миры с точностью до пикселя при нестабильности сканирования вдоль направления полета КА не превышающего 0,17 пикселей на строку.
- 2. Методы Ван Циттерта и Голда не позволяют восстановить изображение с точностью до пикселя, но, практически, не зависят от нестабильности геометрии сканирования.
- 3. На основании этих данных становится возможным оценить требования по стабилизации КА.

Технические характеристики КА и СР СА

Частота сканирования, f_s	строк/с	75
Время сканирования одной строки, Δt	мс	13,3
Допустимая скорость наклона КА вдоль орбиты	град/с	0,56
Ширина полосы обзора, L	КМ	2 300
Количество отсчетов (пикселей) по строке, $i*K$		15 817
Время между двумя соседними отсчетами на строке, δt	МКС	1,04
Геометрическое разрешение на местности (в надире)	М	90
Отношение диаметра МПЗ к геометрическому разрешению на местности (кратность), <i>К</i>	разы	7
Количество информации в одном отсчете (квантование отсчетов)	бит/пиксель	10
Скорость записи на борту или передачи информации на Землю (не менее)	Мбит/с	12