Оптические параметры протяженного облака из самолетных измерений НАСА

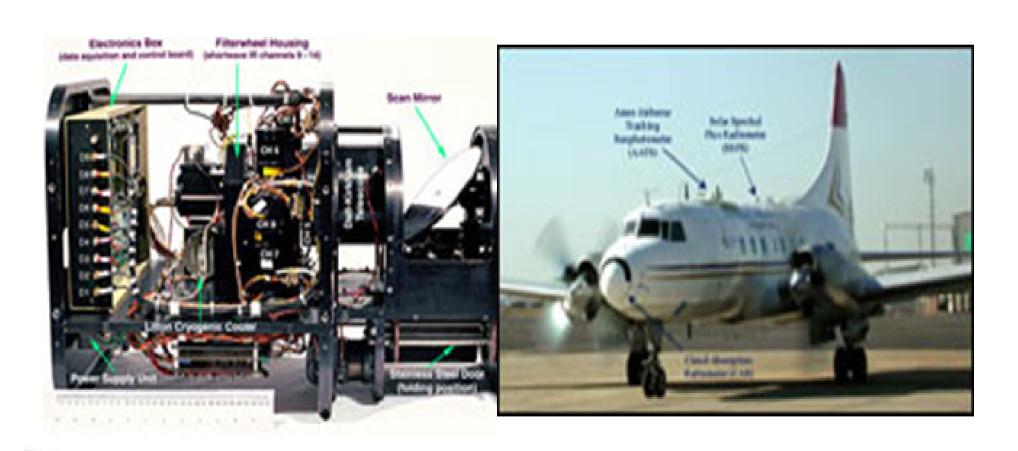
Гения Мванго Джефва (1), Ирина Мельникова (1), Чарльз Гатебе (2).

(1) Российский государственный гидрометеорологический университет, Малоохтинский пр., д. 98, 195196, Санкт-Петербург, mwangoj@yandex.ru

(2) NASA, Goddard Space Flight Center, Mail Code 613.2, Greenbelt, MD 20771, USA

Цель работы

Решение обратной задачи оптики облаков – определение оптических параметров:

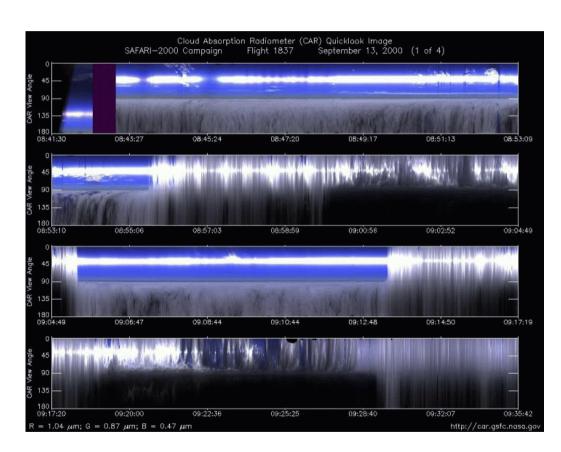

- оптической толщины,
- альбедо однократного рассеяния,
- объемных коэффициентов рассеяния и поглощения.

Места проведения исследований

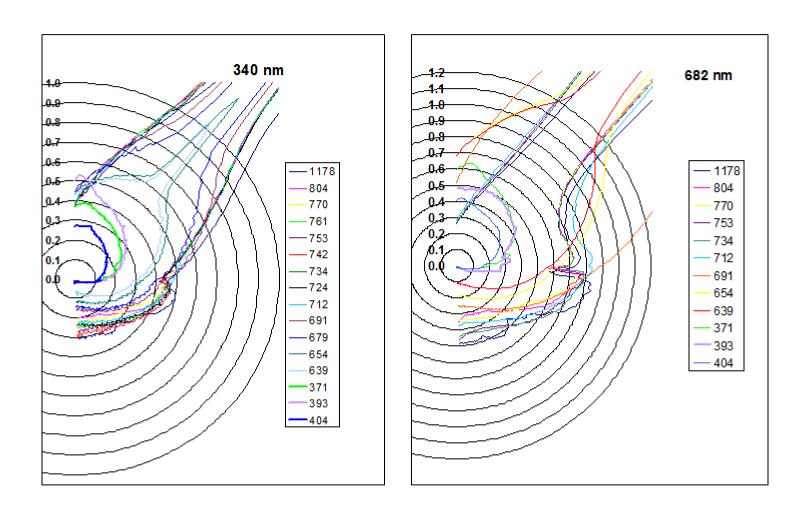
- Аляска
- Бразилия
- Кувэйт
- Португалия
- США
- Мексика
- Западный берег южной Африки

Применяемая аппаратура

- **3BM**
 - CAR-(Cloud Absorption Radiometer)

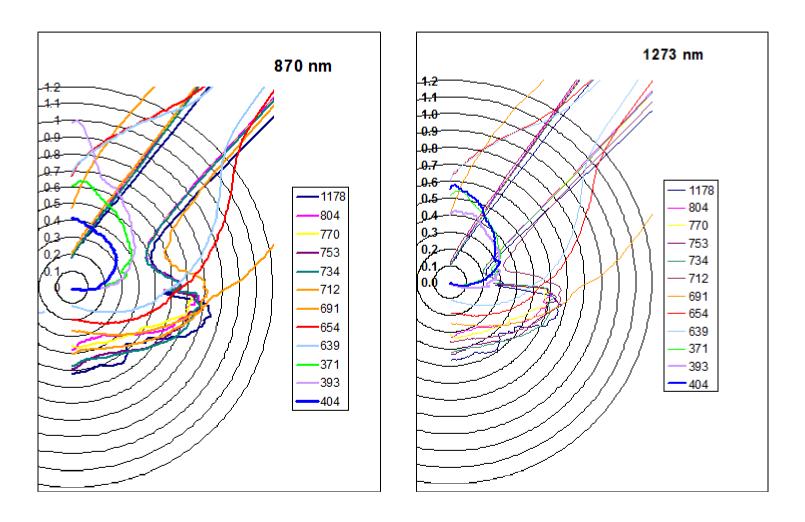

Спектральный диапазон и формат данных

- Верхняя и нижняя границы облака на высотах 800 и 400 м
- Эксперимент проводился на широте -21°,73 и долготе 13°,70
- Дата проведения эксперимента 13 сентября 2000 г.
- Длительность проведения эксперимента 1 час
- Зенитный угол солнца слабо менялся в течение полета и в среднем составлял 37°,60.
- Начальная высота полета 800 м, далее подъем до 1170 м, затем спуск до 354 м и снова подъем до 780 м.
- Исходные данные представляют собой величины интенсивности солнечной радиации, измеренные радиометром CAR с борта самолета над, под и внутри облачного слоя, в зенитных углах визирования от 0 до 180° через 1°.


Спектральный диапазон и формат данных (продолжение)

• Сигналы регистрируются в 8-и спектральных каналах, соответствующих 6-ти полосам поглощения в коротковолновом диапазоне : 340, 381, 472, 682, 870, 1.035, 1.219, 1.273 нм

Скан, представляющий измерения прибором CAR в канале 340 нм



Измеренная рассеянная интенсивность в каналах 340 и 682 нм

Трансформация поля излучения в облаке с высотой. Высоты наблюдения указаны на рисунке

Измеренная рассеянная интенсивность в каналах 870 и 1273 нм

Трансформация поля излучения в облаке с высотой. Высоты наблюдения указаны на рисунке

Метод обработки- метод обратных асимптотических формул

Основные предположения:

Большая оптическая толщина облака $\tau_0 >> 1$

Слабое истинное поглощение по сравнению с рассеянием 1- ω_0 <<1

Обозначим: $I(0,\eta,\zeta) = S\zeta\rho(0,\eta,\zeta)$ и $I(\tau_0,\eta,\zeta) = S\zeta\sigma(\tau_0,\eta,\zeta)$

$$s^2 = \frac{1 - \omega_0}{3(1 - g)}$$
 $\tau' = 3(1 - g)\tau_0$

Формулы для обработки измерений над облаком

$$s^{2} = \frac{[\rho_{0}(\varphi, \eta_{1}\zeta) - \rho_{1}]u_{0}(\eta_{2}) - [\rho_{0}(\varphi, \eta_{2}\zeta) - \rho_{2}]u_{0}(\eta_{1})}{[\rho_{0}(\varphi, \eta_{2}\zeta) - \rho_{2}]u_{0}(\eta_{1}) \left(\frac{u_{2}(\eta_{1})}{u_{0}(\eta_{1})} - \frac{u_{2}(\eta_{2})}{u_{0}(\eta_{2})}\right) - \frac{1.91a_{2}(\zeta)u_{0}(\eta_{1})u_{0}(\eta_{2})}{\delta(1+g)}[\eta_{1} - \eta_{2}]}$$

$$\tau' = (2s)^{-1} \ln \left\{ \frac{M\overline{N}u(\eta_1)u(\zeta)}{\rho_{\infty}(\varphi,\eta_1,\zeta) - \rho_1} + N\overline{N} \right\} ,$$

где ρ_1 и ρ_2 – отраженная облаком интенсивность солнечной радиации измеренная в двух направлениях визирования

 $u_0(\eta_1) \ u_0(\eta_2)$ — функции выхода, полностью определяются косинусом зенитного угла визирования

Метод обработки (продолжение):

Алгоритм обработки:

- 1. Над облаком
- Цикл по спектральным каналам
- Чтение данных на уровне измерений над облаком (800 м)
- Цикл по углам визирования а) усреднение по 10 сканам, измеренным на одной высоте над облаком
- Определяется оптическая толщина облачного слоя в предположении консервативного рассеяния по формуле: $\tau = \left[\frac{4u_0(\zeta)u_0(\eta)}{\rho_{\scriptscriptstyle \infty} \rho} \frac{4}{1 A}\right] \frac{1}{3(1 g)} 0.714$
- Рассчитывается среднее значение консервативной оптической толщины и среднее отклонение от средней величины оптической толщины
- Вычисляется значение параметра затенения верхней границы облаков (неровности верхней границы): $r = \frac{1}{N\overline{\tau}} \sum_{i=1}^{N} \left| \tau_i \overline{\tau} \right|$
- Учитывается неровность верхней границы

$$\rho_0(\eta, \zeta) = \rho_0(\eta, \zeta)(1-r) + ra(\eta)$$

$$u(\zeta) = u(\zeta)(1-r) + rn$$

$$a(\zeta) = a(\zeta)(1-r) + ra^{\infty}$$

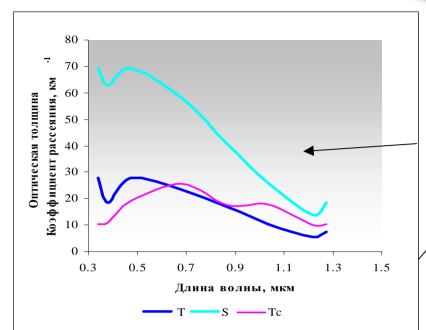
• Рассчитываются искомые значения s^2 и τ

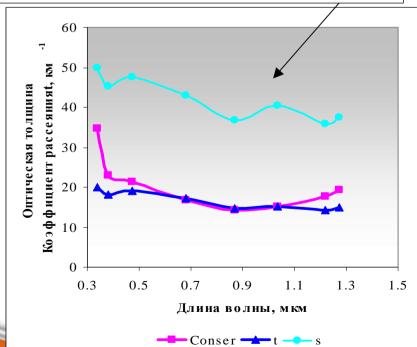
Результаты обработки данных измерений над облаком:

λ , mkm	0.340	0.381	0.472	0.682	0.870	1.035	1.219	1.273
A_s	0.0774	0.0518	0.0577	0.0481	0.0461	0.0472	0.0452	0.0441
τ cons	9.459	10.10	16.92	23.22	18.88	18.02	9.07	10.39
τ	10.0	13.1	27.7	32.2	16.2	10.3	5.6	7.4
σ км-1	25.0	32.7	69.4	80.4	40.6	25.9	13.9	18.4
r	0.020	0.024	0.042	0.035	0.032	0.069	0.077	0.199
СКО т	0.390	0.528	1.101	1.334	0.772	0.528	0.388	0.387
ω	0.999986	0.999936	0.999736	0.999994	0.999839	0.999141	0.999675	0.999695
1-ω	0.000014	0.000064	0.000264	0.000006	0.000161	0.000859	0.000325	0.000305
<i>к</i> км ⁻¹	0.0811	0.1937	0.1790	0.1568	0.1342	0.1285	0.0856	0.1084
СКО ω	0.0007	0.0011	0.0006	0.0005	0.0005	0.0009	0.0010	0.0010

Метод обработки (продолжение)

Формулы для обработки измерений под облаком

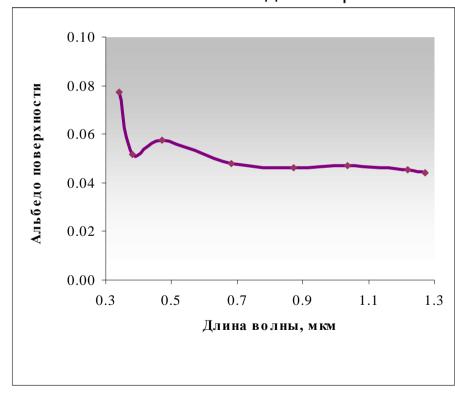

$$s^{2} = \left[\frac{I_{1}\overline{K}_{0}(\mu_{2})}{I_{2}\overline{K}_{0}(\mu_{1})} - 1\right] \frac{1}{\frac{\overline{K}_{2}(\mu_{1})}{\overline{K}_{0}(\mu_{1})} - \frac{\overline{K}_{2}(\mu_{2})}{\overline{K}_{0}(\mu_{2})}},$$

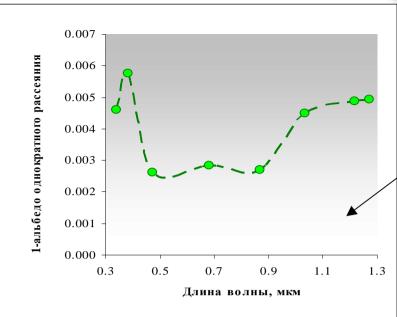

$$\tau' = s^{-1} \ln \left[\frac{\sqrt{4I_{1,2}^{2}l\overline{l} + m^{2}\overline{K}(\mu_{1,2})^{2}K(\mu_{0})^{2} + m\overline{K}(\mu_{1,2})K(\mu_{0})}}{2I_{1,2}l\overline{l}}\right],$$

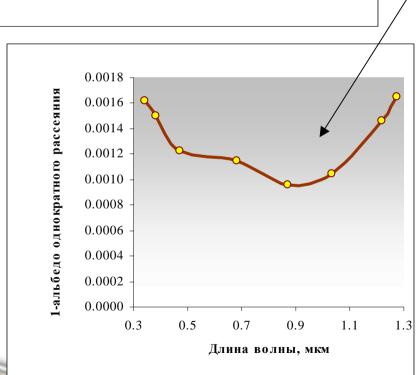
$$A = I(48^{\circ})/I(132^{\circ})$$

Результаты обработки данных измерений под облаком:

д, мкм	0.340	0.381	0.472	0.682	0.870	1.035	1.219	1.273
A_s	0.0774	0.0518	0.0577	0.0481	0.0461	0.0472	0.0452	0.0441
τ cons	34.62	23.00	21. 48	16.85	14.34	15.22	17.66	19.39
τ	20.0	18.10	19.0	17.20	14.71	15.25	14.25	15.00
σ км ⁻¹	50.00	45.3	47.5	43.00	36.70	40.48	35.80	37.4
r	0.0046	0.0071	0.0051	0.0061	0.0057	0.0062	0.0064	0.0059
СКО т	0.7986	0.7249	0.7260	0.6826	0.6748	0.6668	0.6697	0.6638
ω	0.998377	0.998501	0.998773	0.998856	0.999043	0.998951	0.998536	0.98852
1-ω	0.001623	0.001499	0.001227	0.001144	0.000957	0.001049	0.001464	0.001448
<i>к</i> км ⁻¹	0.0812	0.0678	0.0582	0.0491	0.0352	0.0425	0.0523	0.0542
СКО Ф	0.00037	0.00032	0.00026	0.00024	0.00018	0.00022	0.00025	0.00026

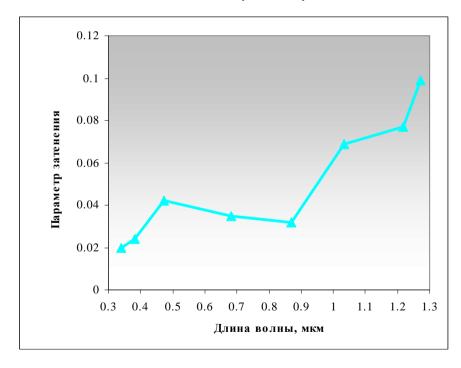



Оптическая толщина Консервативная оптическая толщина Коэффициент рассеяния


Из данных на верхней границе облака

Из данных на нижней границе облака

Альбедо поверхности



1-альбедо однократного рассеяния

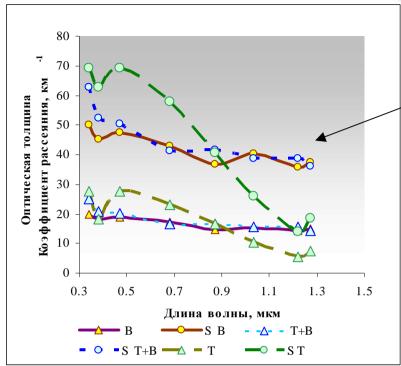
Из данных на верхней границе облака

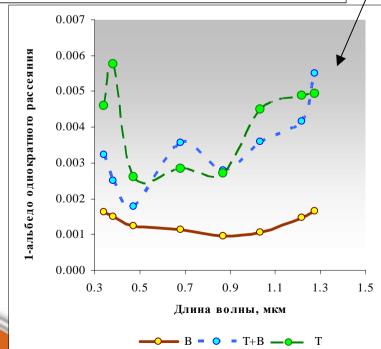
Из данных на нижней границе облака

Параметр затенения

3. Восстановление оптических параметров из совместной обработки измерений на верхней и нижней границе облака.

$$s^{2} = \frac{\overline{u_{0}(\eta)^{2}(\rho_{0} - \rho)^{2} - u_{0}(\eta)^{2}\sigma^{2}}{16u_{0}(\eta)^{2} \left[\overline{u_{0}(\eta)^{2}u_{0}(\zeta)^{2} - \sigma^{2}\left(\frac{A}{1 - A}\right)^{2}\right] - \left[-12\delta\frac{A}{1 - A}u_{0}(\eta)\left[\overline{u_{0}(\eta)(\rho_{0} - \rho)^{2} - \frac{A}{1 - A}u_{0}(\eta)\sigma^{2}\right] - J}$$

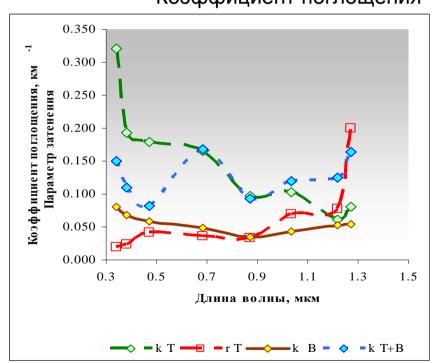

где:


$$J = \frac{2A}{1 - A} \left[a_2(\eta) + Q_2 - \frac{u_2(\eta)}{u_0(\eta)} \right] \overline{u_0(\eta)} (\rho_0 - \rho)^2 + \frac{a_2(\eta)a_2(\zeta)\overline{u_0(\eta)}^2 (\rho_0 - \rho)}{3\delta}$$

$$\tau' = \frac{1}{2s} \ln \left\{ N^2 \left(1 + \frac{2u_0(\eta)u_0(\zeta)s(4 - 9s^2)}{(\rho_{\infty} - \rho)} \right) \left(1 - \frac{8As}{1 - Aa^{\infty}} \right) \right\} .$$

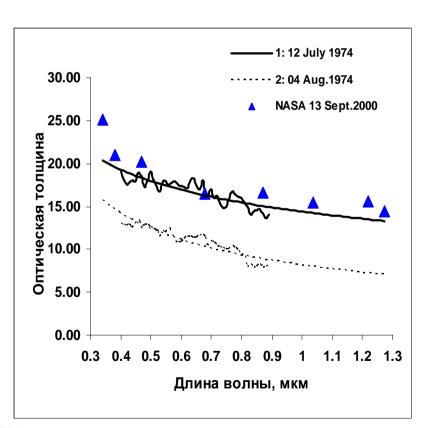
Результаты совместной обработки данных измерений над и под облаком

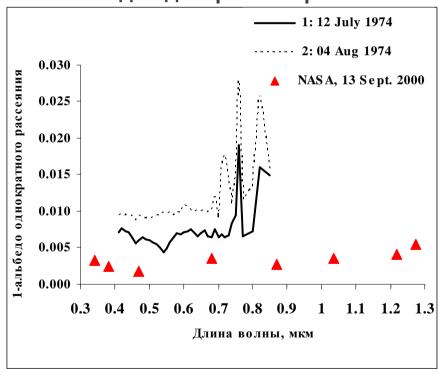
λ, мкм	0.340	0.381	0.472	0.682	0.870	1.035	1.219	1.273
A_s	0.0774	0.0518	0.0577	0.0481	0.0461	0.0472	0.0452	0.0441
Conser	22.44	18.46	20.77	22.85	19.88	18.44	16.91	16.33
τ	25.06	20.94	20.22	16.53	16.64	15.47	15.53	14.47
σ км ⁻¹	62.66	52.35	50.55	41.33	41.60	38.68	38.82	36.18
r	0.0150	0.0150	0.0153	0.0153	0.0152	0.0155	0.0155	0.0169
СКО т	0.1220	0.0796	0.0457	0.0481	0.0438	0.0381	0.0843	0.0909
ω	0.996765	0.997397	0.998275	0.996487	0.997861	0.996834	0.996742	0.995468
1-ω	0.003235	0.002603	0.001725	0.003613	0.002139	0.003166	0.003258	0.004532
<i>к</i> км ⁻¹	0.1506	0.1094	0.1198	0.1687	0.0937	0.1195	0.1248	0.1638
СКО Ф	0.0001	0.0001	0.0002	0.0007	0.0003	0.0005	0.0005	0.0005



Оптическая толщина Коэффициент рассеяния

1-альбедо однократного рассеяния


Параметр затенения (красная линия) Коэффициент поглощения


Сравнение:

Оптические параметры восстановленные по данным самолетных измерений потоков солнечной радиации у западного берега Северной Африки в 1974 г. и у западного берега Южной Африки по измерениям интенсивности в 2000 г.

Оптическая толщина облака

1-альбедо однократного рассеяния

Выводы:

- 1. Решение обратной задачи представлено непрерывными функциями, значит оно существует и единственно.
- 2. Выявлена явная спектральная зависимость оптической толщины и коэффициента рассеяния, что совпадает с полученными ранее результатами.
- 3. Коэффициент поглощения, полученный из измерений на нижней границе меньше по величине, чем полученный из измерений на верхней границе, значит атмосферные аэрозоли (пыль, сажа) задерживаются (находятся) в верхних слоях облака.
- 4. Сравнение с величинами оптических параметров, полученными из измерений потоков солнечной радиации, выполненными в 1974 г., показывают близкие значения и спектральную зависимость оптических параметров.

Спасибо за внимание