

ИНТЕРФЕРОМЕТРИЧЕСКАЯ ОБРАБОТКА ДАННЫХ КОСМИЧЕСКИХ РСА ВЫСОКОГО И СВЕРХВЫСОКОГО РАЗРЕШЕНИЯ

Коберниченко В.Г., Сосновский А.В., Никольский Д.Б. Уральский федеральный университет имени первого Президента России Б.Н. Ельцина, ФГУП «Уралгеоинформ», Компания «Совзонд»

Основные тенденции развития радиолокационных систем космического наблюдения

- Резкое повышение пространственного разрешения радиолокационных снимков (до 1-3 метров)
- Возможность получения информации о высоте поверхности за счет применения метода радиолокационной интерферометрии
- Создание группировок радиолокационных спутников (TerraSAR-X, TerraSAR-Tandem, Cosmo-SkyMed-1,2,3,4)
- Возможность полной поляриметрической обработки

Современные космические радарные системы

					Съе	мка	
Спутник	Страна	Запуск	Диапа- зон	Период, дней	ПР,м	ПС, км	пл
ERS-2	Европа	21.04.1995	с	35	30	100	-
Radarsat-1	Канада	04.11.1995	с	24	8	50	-
Envisat / ASAR	Европа	01.03.2002	с	35	25	100	+/-
ALOS / PALSAR	Япония	24.01.2006	L	46	7	70	++
COSMO-SkyMed-1	Италия	07.06.2007	x	16	1	10	++
TerraSAR-X	Германия	15.06.2007	x	11	1	10x5	+
COSMO-SkyMed-2	Италия	08.12.2007	x	16	1	10	++
Radarsat-2	Канада	14.12.2007	с	24	3	20	+++
COSMO-SkyMed-3	Италия	24.10.2008	x	16	1	10	++
		перспективные с	истемы				
TanDEM-X	Германия	Начало 2010	X	11	1	10x5	+
COSMO-SkyMed-4	Италия	2010	X	16	1	10	+

http://sovzond.ru/satellites

Геометрия радиолокационной интерферометрической съёмки

Метод радиолокационной

интерферометрии – основные соотношения

5

Комплексные амплитуды отраженных от точки земной поверхности сигналов, принимаемых радиолокаторами:

$$\dot{A}_{m1} = A_{m1} \exp(-2jkR_1)$$
 $\dot{A}_{m2} = A_{m2} \exp(-2jkR_2)$

Интерферограмма:

$$I = \dot{A}_{m1} \cdot \dot{A}^{*}_{m2} = A_{m1} \cdot A_{m2} \cdot \exp(-2jk(R_2 - R_1)) = A_{m1} \cdot A_{m2} \cdot \exp(-j(\varphi_2 - \varphi_1))$$

«Топографическая» разность фаз:

$$\psi = 2\Delta R \cdot \frac{2\pi}{\lambda}$$

 $\varphi = \psi + \Delta \varphi + \nu$

Реально измеренная разность фаз:

Высота точки поверхности:

$$h = H - R_1 \frac{\lambda}{4\pi B} \psi$$

Этапы интерферометрической обработки

Программные комплексы, реализующие

интерферометрическую обработку

□ SARscape,

- IMAGINE Radar Mapping,
- Photomod Radar
- Radar Tools.

Качество ЦМР существенно зависит от подбора алгоритмов обработки и настройки их параметров.

Цели работы – разработка методики экспериментальное сравнение эффективности используемых алгоритмов и выбор оптимальных с точки зрения точности и скорости обработки.

Фильтрация фазового шума и развёртывание фазы

1. Фильтрация – снижение уровня фазового шума

2. Развёртывание – устранение фазовой неоднозначности

Алгоритмы фильтрации фазового шума

- алгоритмы простого усреднения с адаптивным подбором размера окна (Boxcar),
- адаптивный пространственный фильтр (Adaptive window),
- алгоритм Голдштейна фильтрации в частотной области (Goldstein filter).

Алгоритмы фильтрации фазового шума

- **адаптивный усредняющий фильтр** – фильтр в

пространственной области с обработкой в массиве локальных окон разных размеров.

оценка центрального элемента окна: $z = c_1 z_1 + c_2 z_2 + c_3 z_3$

еде $c_1 = \gamma^2$, $c_2 = 2\gamma(1-\gamma)$, $c_3 = (1-\gamma)^2$, z_i - статистики в локальных окнах-масках:

- фильтр Гольдштейна – фильтрация в частотной области по правилу: $G(i, j) = \left| F(i, j) \right|^{1 - \gamma} \cdot F(i, j)$

гдеF(i, j) - спектр интерферограммы, ү- локальный коэффициент когерентности.

Алгоритмы развёртывания интерферометрической фазы

- алгоритм «растущих пикселей» (Region Growing).
- алгоритм минимальной стоимости потока (Minimum Cost Flow)
- алгоритм Гольдштейна
- алгоритм наименьших квадратов
- алгоритм целочисленной оптимизации и т.д.

Алгоритм Гольдштейна

- основан на поиске точек и областей интерферограммы,
 где нарушается условие потенциальности градиента фазы и исключении их из процесса интегрирования.
- Точки, в которых ротор градиента отличен от нуля, называют фазовыми вычетами или фазовыми остатками; они могут быть положительными и отрицательными. Пара из близлежащих отрицательного и положительного вычетов соединяется ветвью. Совокупность ветвей образует дерево. Далее различными методами оптимизации строится дерево наименьших размеров, после чего производится интегрирование изображения градиента фазы, причем пути интегрирования должны обрываться в местах пересечения с ветвями.

Алгоритм наименьших квадратов

 Минимизация суммы квадратов разностей градиента относительной фазы и оценки абсолютной фазы

Алгоритм «растущих пикселей»

- Основан на линейном предсказании значения абсолютной фазы элемента интерферограммы на основании развернутых ранее значений
- Исходные точки для развертывания выбираются на участках с высокой когерентностью

Экспериментальные результаты Требования к тестовому участку

- Наличие как естественных изменений рельефа, так и антропогенных его нарушений (карьеры, открытые горные разработки).
- Наличие участков растительности разного типа (хвойные и лиственные леса, болота, сельскохозяйственные угодья).
- Наличие объектов с различной отражательной способностью (водная поверхность, опоры ЛЭП, железные и автомобильные дороги).
- Обеспеченность в картографическом и планово-высотном отношении

Создание эталоных ЦМР

1. Высотные данные с ЦТК масштаба М 1:25000

2. Высотные отметки ЦТП крупных масштабов (1:500...1:2000)

Критерии сравнения:

$$S = \sqrt{\frac{1}{N} \sum_{i=1}^{N} (R_i - M_R)^2}$$

- среднеквадратичное отклонение

$$D = \frac{1}{N} \sum_{i=1}^{N} \left| R_i \right|$$

- среднее абсолютное отклонение

GPS-съёмка контрольных точек

Карта

Вид на местности Вид из GogleEarth

ALOS

Эталонные точки по GPS - съемке

Nº	Эталонная	Описание
	высота, м	
1	214,04	Примыкание второстепенной дороги к автотрассе
2	185,38	Старый ж/д мост через реку
3	206,1	Угол ограждения подстанции (100 кВ)
4	227,31	Пересечение автодороги и группы линий электропередач (35, 110, 220 кВ).
5	212,24	Пересечениепроселочной дороги со старым трактом
6	192,72	Опора линии электропередач (220 кВ).
7	186,48	Отворот с тракта на поселок

Генерирование интерферограммы и выравнивание фазового набега (по эллипсоиду или грубой ЦМР)

Фильтрация фазового шума различными алгоритмами адаптивный пространственный

исходная картина

фильтр

усредняющий фильтр

фильтр Гольдштейна

Развёртывание фазы

Алгоритм «Region growing»

Алгоритм «Minimum cost flow»

Результат построения ЦМР. Тестовый участок 1

Оценка точности ЦМР. Сечения рельефа (Тестовый участок 1)

Участок – к западу от карьера. Перед отвалом – городская застройка. С.К.О. по высоте – 8.0 м

Сравнение с эталоном (участок 2)

По сечению рельефа

Разностные матрицы

Сравнения по сечениям рельефа

Оценка влияния параметров фильтров

Оценка влияния параметров фильтров

3. Частотный фильтр «Goldstein»

💳 САО естеств. 🖛 🖛 СКО естеств. ——— САО город. ……… СКО город

Результаты сравнения (GPS-съёмка)

N⁰	Эталон. высота	Отклонения от эталона, м				
	(GPS), м	Adaptive	Boxcar	Goldstein		
1	214,04	-8,96	-1,96	-10,96		
2	185,38	-17,62	-6,62	-14,62		
3	206,1	-6,9	-6,9	-8,9		
4	227,31	-12,69	0,31	2,31		
5	212,24	46,24	9,24	4,24		
6	192,72	-15,28	-9,28	-7,28		
7	186,48	1,48	-13,52	-10,52		
С.к.о.:		22,16	7,44	7,09		

Сложные случаи при развертывании фазы

- области низкой когерентности

- дороги и другие линейные объекты (порождают «ложные» перепады рельефа)

- здания и сооружения, в особенности те, чья высота превышает «высоту неоднозначности» (некорректно развертывается не только здание, но и прилегающая область)

Результаты сравнения алгоритмов фильтрации и развертывания фазы

Алгоритм фильтрации, развертывания фазы	САО для естеств. рельефа, м	СКО для естеств. рельефа, м	САО для городской терр-ии, м	СКО для городской терр-ии, м	Время Разв-я, мин.
Adaptive window, Minimum Crest Flow	26.273	28.285	17.915	20.225	131
Adaptive window, Region growing	12.307	17.031	17.455	13.157	1
Boxcar window, Minimum Cost Flow	6.8806	8.5004	20.23	11.432	132
Boxcar window, Region growing	6.8425	8.4065	20.181	11.431	1
Goldstein, Minimum Cost Flow	6.4025	7.6177	19.94	9.6972	131
<u>Goldstein, Region</u> <u>growing</u>	6.382	7.6891	19.897	9.6283	1

Пример обработки тандемной пары с малой базовой линией

eline Estimati	on	
Master file	C:\projects\sat_images\asbest\cosmo\import\09_11_2009_vv_pwr	
Slave file	C:\projects\sat_images\asbest\cosmo\import\10_11_2009_vv_slc	
	Normal Baseline (m) = 13.708	
	Critical Baseline (m) = 4217.509	
	2 PI Ambiguity height (m) = 365.824	
	Range Shift (pixels) = -28.447	
	Azimuth Shift (pixels) = -363.142	
	Doppler Centroid diff. = 622.740 Critical = 3301.056	
Baseline file		
Start Store	Batch Cancel Help	

Обработка фрагмента с полным разрешением (CosmoSkyMed)

ЦМР CosmoSkyMed (слева), ЦМР SRTM (справа)

Результаты работы

- Предложена методика экспериментальной оценки алгоритмов фильтрации и развертывания фазы при интерферометрической обработке данных космических РСА, включающая требования к тестовому участку, процедуру построения эталонной ЦМР, критерии оценки качества построенной модели.
- На основе экспериментальной обработки фрагментов РЛИ, полученных PCA ALOS PALSAR, показано что наилучшие результаты по точности и быстродействию дает комбинация из алгоритма фильтрации Гольдштейна и алгоритма развертывания «растущие пиксели». Вертикальная точность цифровой модели рельефа, полученная в результате экспериментов, оказалась довольно высокой: при разрешении исходных изображений в 10 м она составила около 6-7 м. Полученной точности цифровой модели рельефа вполне достаточно для создания рельефа цифровых топографических карт масштаба 1:100 000.

Благодарность

Авторы выражают благодарность ОАО «Компания «СОВЗОНД» и ФГУП «Уралгеоинформ» за предоставление радиолокационных космических снимков

Публикации авторов по теме доклада

- Коберниченко В.Г., Сосновский А.В. Анализ алгоритмов интерферометрической обработки данных космической радиолокационной съемки //Физика волновых процессов и радиотехнические системы, № 3, 2010.
- Сосновский А.В., Коберниченко В.Г. Построение цифровых моделей рельефа земной поверхности по данным систем радиолокационной космической съёмки (статья)// Труды Российского научно-технического общества радиотехники, электроники и связи им. А.С.Попова, сер. Акустооптические и радиолокационные методы измерений и обработки информации, вып. III. М.:2009. 281 с. (с.198-202).
- Никольский Д.Б. Передовые направления в обработке и применении радиолокационных данных//Геоматика, π1, 2008, c.21-24.