Козлов Е.М.

Характеристики дифференцированных вариаций спектральной яркости восходящего излучения системы атмосфера-поверхность в международном многоуровневом эксперименте "Карибэ - 88" (Наблюдаемые реакции).

Введение

Результаты исследований поля вариаций восходящего излучения системы «атмосфера – земная поверхность» (САП) *I_λ*(*x*) в оптическом диапазоне длин волн *λ*, где *x* - горизонтальная координата наблюдений, позволяют утвердиться во мнении, что имеющая место анизотропия вариаций спектральной яркости восходящего излучения в *λ*, Ω - пространстве является следствием проявления компонентов, образующих систему. В свою очередь, это позволяет прийти к выводу,

что носителями информации о компонентах САП могут служить взаимные спектральные (или биспектральные) образы $VS_{x}(\Omega, \lambda)$, которые, с одной стороны, отображают характер реакции взаимодействия k-компонента системы с электромагнитным (солнечным) излучением $r_{k}(\Omega, \lambda)$, а с другой, через спектры пространственных вариаций $S_{k}(\lambda, \Omega)$ - пространственные особенности регистрируемого компонента.

- Такое восприятие поля вариаций восходящего излучения САП может позволить использовать спектральный подход при решении задач дифференциации ее компонентного состава (ДКС).
- Следует отметить, что обоснованная и исчерпывающая оценка положительных и отрицательных сторон такого подхода возможна лишь только после его соответствующих исследований и проверки на практике. Первым шагом в этом направлении можно считать попытку восстановления спектральной яркости атмосферной дымки и выходящего из водной толщи излучения, которая была предпринята по

надирным измерениям восходящего излучения, во время международного, многоуровневого эксперимента «Карибэ 88» с помощью спектрометра МКС – М.

 Предварительные результаты дифференциации компонентов системы, позволили прийти к мнению о принципиальной возможности применимости рассмотренного метода ДКС при решении задач дистанционного зондирования, а имеющиеся резервы в части учета мешающих факторов, позволяют надеяться на получение, после доработки алгоритма ДКС САП, более качественных результатов. С этой целью были проведены дополнительные исследования.

- В частности, были проанализированы спектры дифференцированных вариаций *s*_{λr0}(λ,Ω) и наблюдаемые реакции взаимодействия с солнечным излучением *m*_{λr0}(Ω,λ), где λr0 - идентификатор, определяющий на оси длин волн координату максимального значения реакции соответствующего вариационного компонента системы.
- Некоторые предварительные результаты исследований S_{λr0}(λ,Ω) были рассмотрены на 6 –й Открытой Всероссийской конференции Современные проблемы дистанционного зондирования Земли из космоса.
- В настоящей работе вниманию предлагаются результаты исследований *rn_{λr0}(Ω, λ)* для *λr*0- дифференцированных вариаций (далее -.вариации).

Реакция системы

• В общем случае, реакция системы является комплексной величиной, которая в *λ*, Ω -пространстве отображает особенности трансформации

падающего излучения *I*₀₂, вызванной его взаимодействием с компонентами системы.

• Здесь будут рассмотрены особенности действительных составляющих реакций САП, т. е. без учета их фазовых свойств. В этом случае, реакцией системы для λr_0 - вариаций, является

$$m_{\lambda r0}(\Omega,\lambda) = a_{\lambda r0}(\Omega,\lambda) / a_{\lambda r0}(\Omega,\lambda_{\lambda r0})$$
,
где $\overline{a}_{\lambda r0}(\Omega,\lambda)$ - среднее амплитудное значение нормированных на
солнечную постоянную $\lambda r0$ - типа вариаций в \prod_{Ω} - полосе

•

центрированных около Ω пространственных частот, которые имели место в центрированной около $\lambda \prod_{k}$ -полосе длин волн оптического диапазона.

Обсуждение результатов

- Применение би-спектрального анализа к вариациям восходящего излучения САП ΔI[↑]_λ(x), в λ, Ω пространстве, определяемом граничными координатами λ_n = 486 нм, λ_k = 880 нм и условными пространственными частотами Ω_n = 1, Ω_k = 12, были выделены шесть типов λr0 дифференцированных вариаций.
- В результате статистической обработки полученных таким образом $m_{\lambda r0,\Omega,i}(\lambda)$ сгруппированных по $\lambda r0$ признаку, были рассчитаны средние наблюдаемые реакции $\overline{rn}_{\lambda r0}(\lambda)$ и среднеквадратические отклонения $\overline{\Delta rn}_{\lambda r0}(\lambda)$ от их средних значений.
- На ряду с этим, для вариационного компонента с λr0 = 880 нм, были проанализированы распределения средних значений m strain (Ω, λ) и среднеквадратических отклонений Δrn strain (Ω, λ) реакций m strain (Ω, λ) от их средних значений.
- Информация об ансамбле *rn*_{λr0,Ω,i}(λ) : числе случаев *n*_{λr0}(Ω) их обнаружения вдоль трассы наблюдений на частотах Ω и λr0 координатах, сведена в таблицу 1.

Таблица 1.

Число наблюдаемых реакций $n_{\lambda r0}(\Omega)$

•	Ω\λr0	486	536	570	750	788	880
•	1	2	2				2
•	2	4	2				2
•	3	5	2				7
•	4	1	2	4			14
•	5	6	2	12		—	33
•	6	5	2	18		—	46
•	7	5	—			—	12
•	8	8	8	32		—	79
•	9	8	11	29		2	125
•	10	18	13	31	1	4	137
•	11	30	19	38	5	10	164
•	12	30	26	41	7	1	169
•	$N_{\lambda r0}$	122	89	205	13	17	790

Средние реакции $\overline{rn}_{\lambda r0}(\lambda)$ и среднеквадратические отклонения $\overline{\Delta rn}_{\lambda r0}(\lambda)$

	—×— 5,36E+02	<u>→</u> 5,70E+02	
		+ 486 Δ	× 536∆
···- 570 Δ	···□··· 750∆	···∗·· 788∆	····• 880A

- Отображают свойства системы для различных вариационных компонентов. Так $\overline{rn}_{sso}(\lambda)$, на смещенных в высокочастотную область частотах, демонстрируют спектральный ход отраженного от водной поверхности излучения со всеми присущими ему спектральными особенностями: слабое поглошение озоном в полосах Шаппюи (450 - 621нм) и водяным паром при λ =712 и 822 нм. Все это происходит на фоне возрастающей реакции, определяемой произведением спектральных коэффициентов отражения от водной поверхности на спектральное пропускание атмосферы.
- Представленные пунктиром $\Delta rn_{\lambda r0}(\lambda)$ распределения, отображают особенности среднеквадратических отклонений восстановленных реакций $rn_{\lambda r0,\Omega,i}(\lambda)$ от их средних значений $\overline{rn}_{\lambda r0}(\lambda)$, которые находятся в интервале 0,05 – 0,27.
- Для выяснения причин, с которыми связаны эти отклонения были проанализированы реакции системы для дифференцированных вариаций
- C $\lambda r_0 = 880$ HM.

Средние реакции $\overline{rn}_{880}(\Omega,\lambda)$

- Можно выделить три характерные области длин волн: I - λ =416 – 450 нм; II - λ = 486 – 570 нм и III - λ = 621 – 880 нм.
- I и II области отображают особенности трансформации излучения в диапазоне длин волн, где проявляется молекулярное (релеевское) рассеяние САП с коэффициентом рассеяния σ_r(λ) ≡ λ⁻⁴.
- Суть происходящего здесь явления, состоит в том, что увеличение коэффициента рассеяния среды приводит к ухудшению ее амплитудночастотных передаточных характеристик (II область). При достижении же определенной величины рассеяния, передаточные свойства системы улучшаются (I область).
- III область, с точностью определяемой условностью координаты максимального значения $\lambda r_0 = 880$ нм, отображает передаточные свойства САП для этого типа вариаций в длинноволновой области оптического диапазона.

- Занимают диапазон 0,00023-0,27.
- Позволяют:
- установить координаты вариационных компонентов в
 λ,Ω пространстве;
- оценить величины отклонений, вносимых различными типами, вариационных компонентов, выступающих в роли помехи по отношению к вариациям с *λr*0 = 880 нм.
- -ипр.

Заключение

- Таким образом, статистическая обработка реакций САП, которые были восстановлены по спектральным измерениям вариаций восходящего излучения в оптическом диапазоне длин волн во время международного эксперимента «Карибэ – 88», и анализ этих данных, позволил получить представление о компонентном составе системы и их характеристиках в - λ, Ω пространстве во время эксперимента.
- На основе анализа распределений средних реакций для вариаций с _{λr0} = 880 нм прослежена динамика реакции этого вариационного компонента, которая вызвана проявлением атмосферной составляющей системы.
- Исследования среднеквадратических отклонений реакций *m*_{880,i} (Ω, λ) от их средних значений подтверждают селективный характер вариационных компонентов и их распределенность в частотном пространстве.