

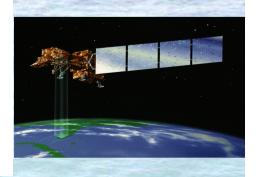
Результаты оперативного спутникового мониторинга Черного, Балтийского и Каспийского морей в 2009-2010 годах

Лаврова О.Ю., Митягина М.И., Каримова С.С., Бочарова Т.Ю., Строчков А.Я.

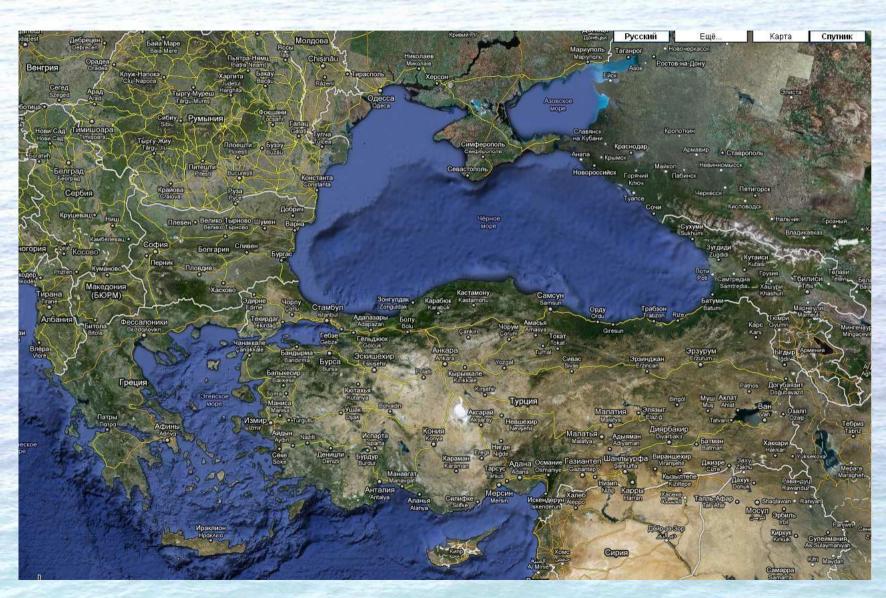
Институт космических исследований РАН

olavrova@iki.rssi.ru

Спутники и сенсоры, используемые для


мониторинга

- Радиолокаторы с синтезированной апертурой ASAR ИСЗ Envisat, SAR ИСЗ ERS-2, пространственное разрешение 75 м. РЛИ в режиме реального времени скачиваются с ftp mpex европейских станций приема и первичной обработки данных: ESRIN, MATERA и KIRUNA
- Многоканальный сканирующий спектрорадиометр MERIS ИСЗ Envisat; разрешение на местности 260 м. Данные MERIS ИСЗ Envisat скачиваются с сайта http://miravi.eo.esa.int . В основном используются композиты 7, 5 и 2 каналов
- Сканирующие спектрорадиометры MODIS ИСЗ Terra/Aqua; Используются композиты 3, 2 и 1 каналов, с разрешением 250 м. выставляемые в режиме реального времени на сайте http://rapidfire.sci.gsfc.nasa.gov
- Сканирующие радиометры ETM+ ИСЗ Landsat 7. и TM Landsat-5. Данные скачиваются с сайта http://glovis.usgs.gov. Разрешение 15, 30 и 60 м
- Карты SST, WLR CHR-а скачиваются с сайтов http://dvs.net.ua/mp/index.shtml u http://smiswww.iki.rssi.ru/
- карты ледового покрова http://www.smhi.se/oceanografi/iceservice/is_prod_en.php



Районы интереса

Моря: Черное, Азовское, Мраморное, восточная часть Средиземного моря

Каспийское море

КИ Балтийское море и Датские проливы

Методика проведения спутникового мониторинга

- > получение спутниковой информации с соответствующих серверов;
- координатная привязка радиолокационных изображений по навигационным данным, содержащимся в служебной информации к каждому кадру, в результате изображение представляется в координатах долгота-широта;
- **подбор гистограммы с целью наилучшего визуального восприятия основных информативных сигнатур на морской поверхности;**
- > нанесение координатной сетки;
- географическая привязка и приведение данных различных приборов дистанционной диагностики, полученных в разных диапазонах зондирования и обладающих различным пространственным разрешением к виду, позволяющему проведение их совместного анализа;
- **комплексная обработка и совместный анализ разнородных спутниковых изображений и интеграция результатов обработки спутниковых данных с информацией, полученной из других источников.**
- тематическая обработка спутниковых данных, включающая в себя: интерактивное дешифрирование многозональных спутниковых изображений.

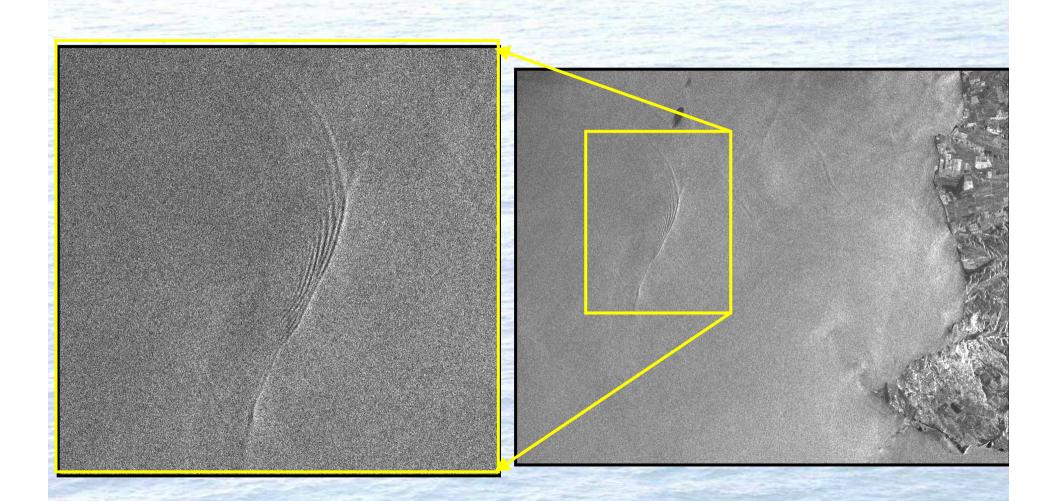
Вся информация об имеющихся данных и результаты тематической обработки заносятся в каталог. Все полученные радиолокационные данные сведены в альбомы, содержащие как сами изображения, так и результаты их дешифровки. В ближайшее время планируется создание полноценной базы данных всех результатов мониторинга.

Сводная таблица радиолокационных изображений, полученных в 2009-2010 г.г.

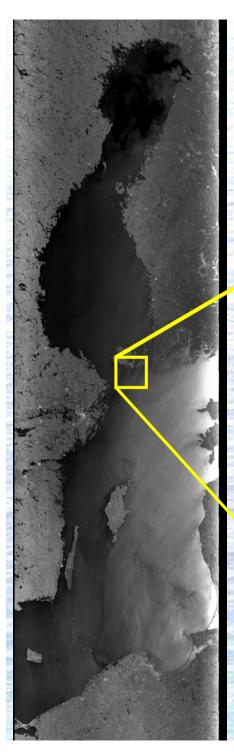
Район	2009 год			2010 год (с января по октябрь)		
	ERS-2 SAR IMM	Envisat ASAR WSM	Envisat ASAR IMM	ERS-2 SAR IMM	Envisat ASAR WSM	Envisat ASAR IMM
Черное море	88	101	161	67	103	110
Каспийское море	Съемк а не осу- ществ- лялась	153	13	Съемка не осуществ-лялась	163	16
Балтийское море	71	292	7	79	371	11

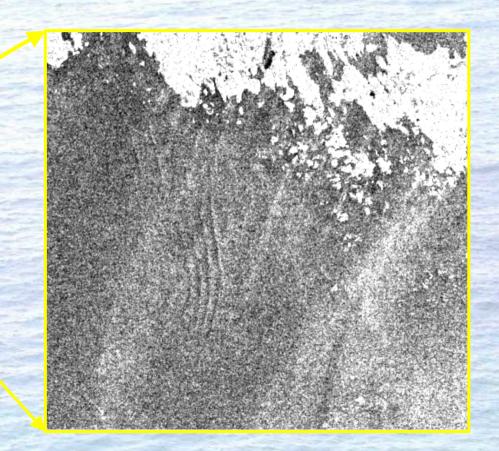
Общее количество РЛИ - 1806

Результаты мониторинга

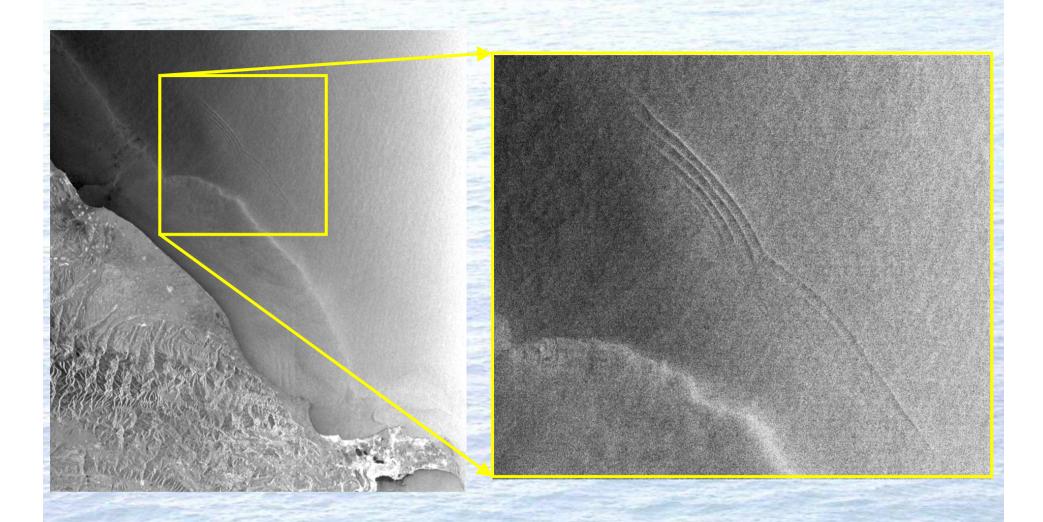


Основные изучаемые процессы и явления


- > Внутренние волны в неприливных морях
- Атмосферные гравитационные внутренние волны
- > Вихри и вихревые диполи
- > Мониторинг ледяного покрова
- > Мониторинг антропогенных загрязнений
- > Наблюдения за судами

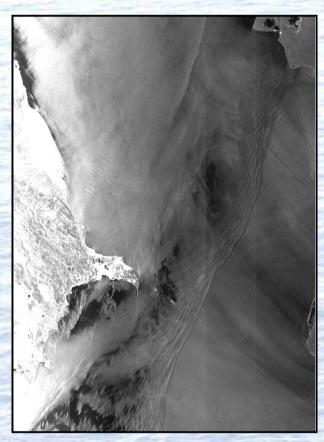

Внутренние волны в Черном море

Цуг внутренних волн в районе Севастополя. Фрагмент РЛИ ASAR Envisat IMP VV, полученного 07.08.2009 в 08:05UTC с разрешением 12,5 м



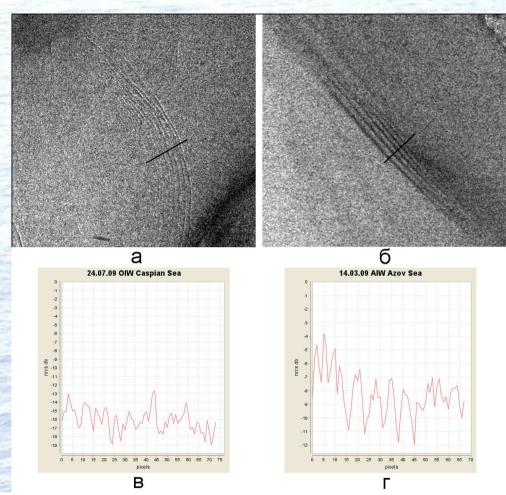
Внутренние волны в Балтийском море

Внутренние волны в южной части Ботнического залива. Фрагмент РЛИ ASAR Envisat WSM HH, полученного 24.07.2010 в 09:07 UTC с разрешением 75 м


Внутренние волны в Каспийском море

Цуг внутренних волн в Среднем Каспии Фрагмент РЛИ ASAR Envisat WSM HH, полученного 11.09.2010 в 06:52 UTC с разрешением 75 м. Протяженность фронта передней волны 82 км (!)

Атмосферные гравитационные внутренние волны

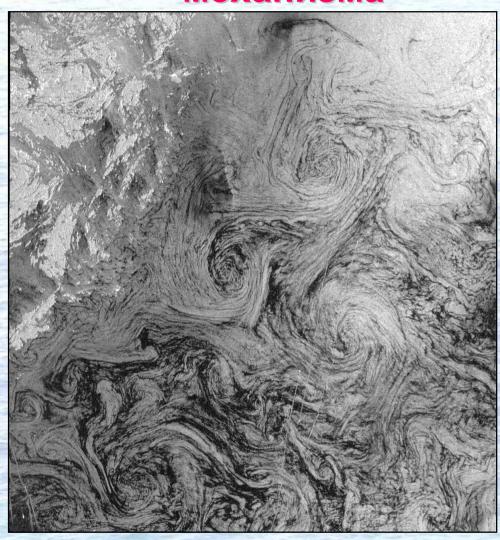

Поверхностные проявления атмосферных гравитационных внутренних волн в Каспийском море, протяженность фронта лидирующей волны 600 км. Фрагмент РЛИ ASAR Envisat WSM HH, полученного 09.03.09 в 18:28 UTC с разрешением 75 м.

Поверхностные проявления пересекающихся атмосферных внутренних волн в районе о. Борхольм. Фрагмент РЛИ ASAR Envisat WSM HH, полученного 26.04.10 в 20:33 UTC с разрешением 75 м.

Различение ОВВ и АГВВ

- а) Цуг внутренних волн в Среднем Каспии. Фрагмент РЛИ Envisat ASAR WSM HH, полученного 24.07.09 в 18:23 UTC с разрешением 75 м.
- б) Поверхностные проявления мелкомасштабных атмосферных гравитационных внутренних волн в восточной части Азовского моря. Фрагмент РЛИ Envisat ASAR WSM VV, полученного 24.07.09 в 18:23 UTC с разрешением 75 м.
- в) и г) Вариации радиолокационного сигнала вдоль обозначенных на РЛИ линий разреза

Радиолокационные образы двух этих явлений очень похожи. Отличия, видные на глаз: ОВВ проявляются в виде ярких светлых полос (сулоев) фронты которых искривлены, а АГВВ — в виде параллельных темных линий (сликов). Учитывая, что разрешение обоих снимков одинаково, видно, что ширина каждой полосы сулоя меньше, чем полосы слика. Поверхностные проявления АГВВ как бы несколько сглажены.


Механизмы проявления вихрей на радиолокационных изображениях

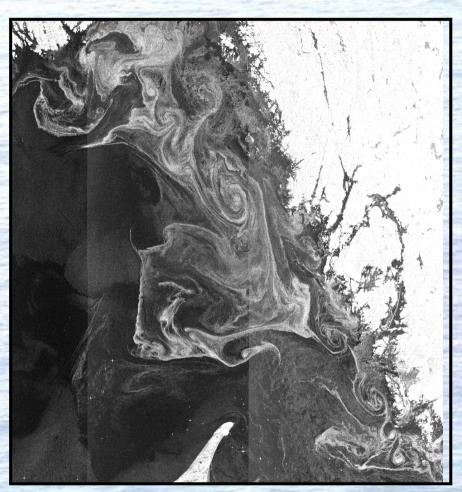
Вихри проявляются посредством:

- нитевидных сликов, образованных скоплениями пленок ПАВ в результате орбитального движения в вихре (темные полосы)
- полос сулоя, очерчивающих вихрь (яркие полосы) в результате сдвига течения
- > плавучего молодого льда в роли пассивного трассера

Проявление вихрей за счет сликового механизма

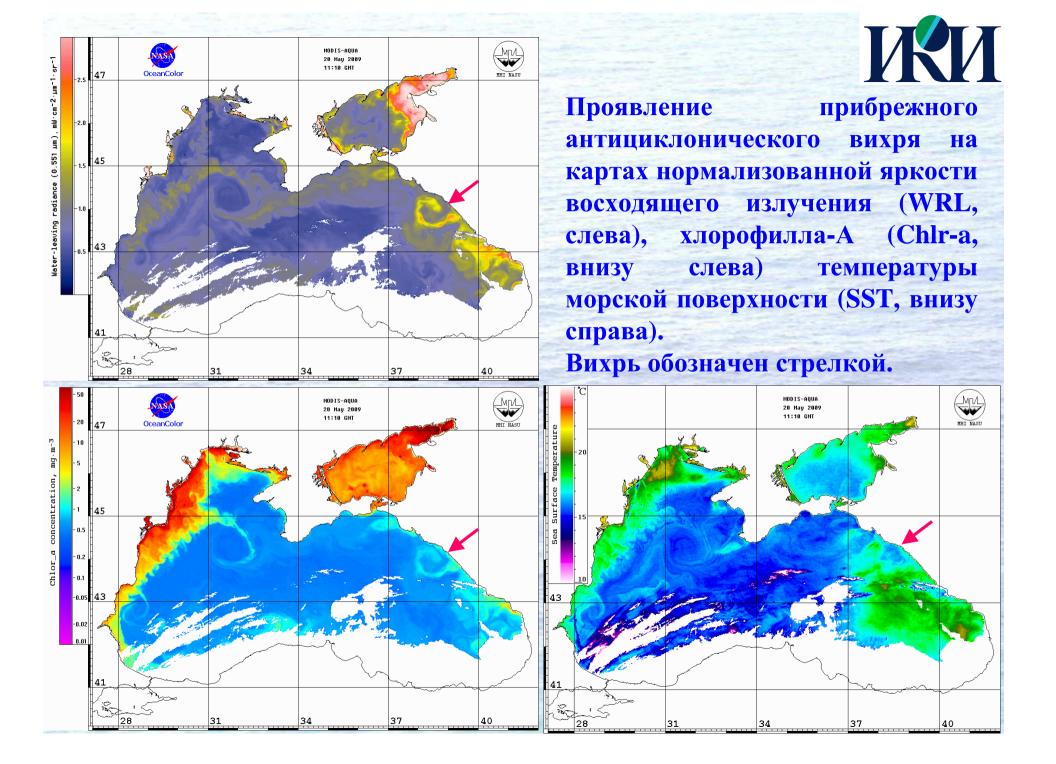
Фрагмент снимка SAR ERS-2 IMM VV от 21.06.2009. Балтийское море к северу от о. Готланд. Разрешение 75 м.

Проявление вихрей за счет сликового и сдвигово-волнового механизма


- 1 вихри, очерченные сликами
- 2 вихри, очерченные полосами сулоя

Фрагмент снимка ASAR Envisat IMM VV от 24.03.2010. Скорость ветра 1-8 м/с

При больших скоростях ветра, 8-12 м/с, слики разрушаются. Вихри могут проявляться в виде ярких «арочных» структур, очерчивающих вихрь или его часть



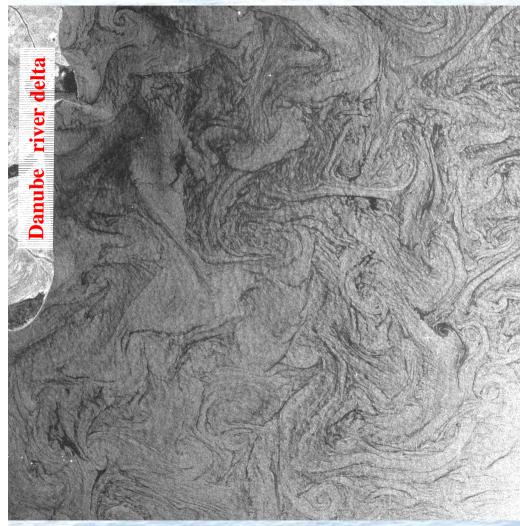
Проявление вихрей за счет «ледового механизма»



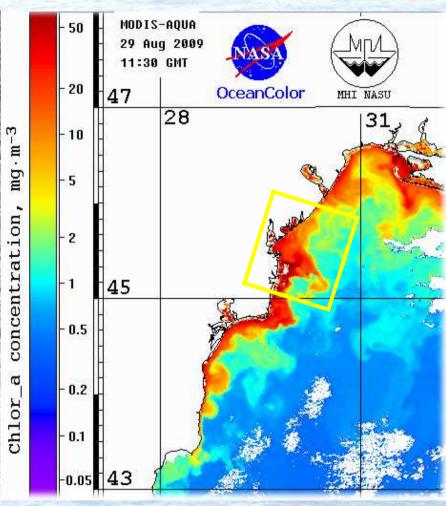
Фрагмент снимка ASAR Envisat WSM HH от 26.01.2010

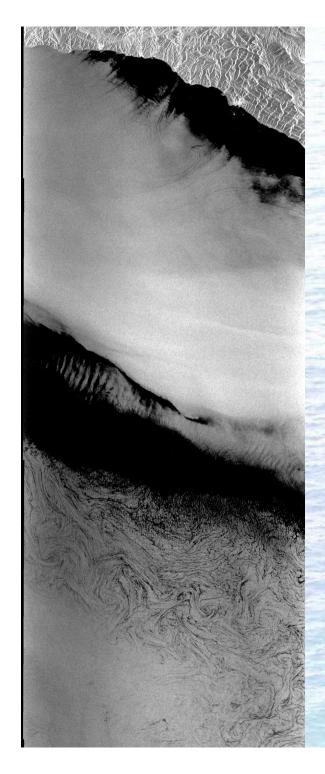
Плавучий молодой лед в роли пассивного трассера

Проявление вихрей на оптических снимках



Сигнал формируется благодаря неоднородностям шероховатости морской поверхности, например, поверхностным пленкам в роли трассеров, как в случае радиолокационных изображений


Фрагмент снимка Envisat MERIS от 01.05.2010. Проявление вихрей в зоне солнечного блика


Мелкомасштабные вихри

Фрагмент снимка ASAR Envisat WSM VV от 29.08.2009 в районе дельты реки Дунай. Разрешение 75 м

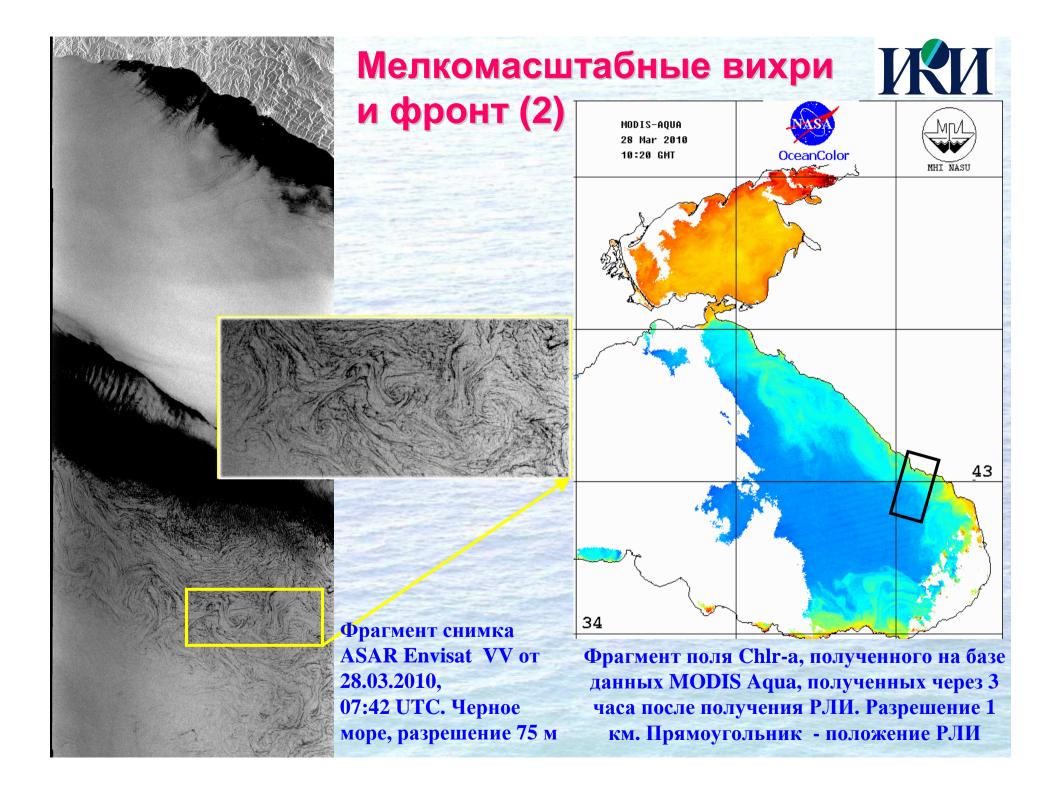
Фрагмент карты Chlr-а, полученной на базе данных MODIS Aqua. Разрешение 1 км. Прямоугольник соответствует положению РЛИ

Мелкомасштабные вихри и фронт (1)

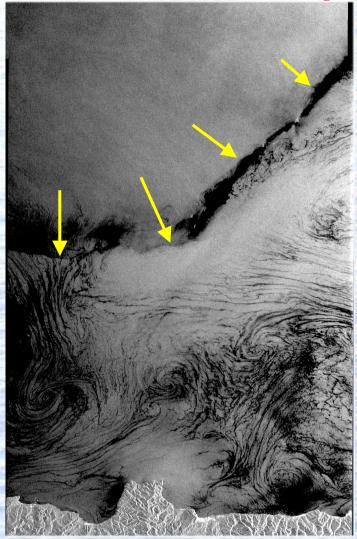
возмущение приводном атмосферы

слое

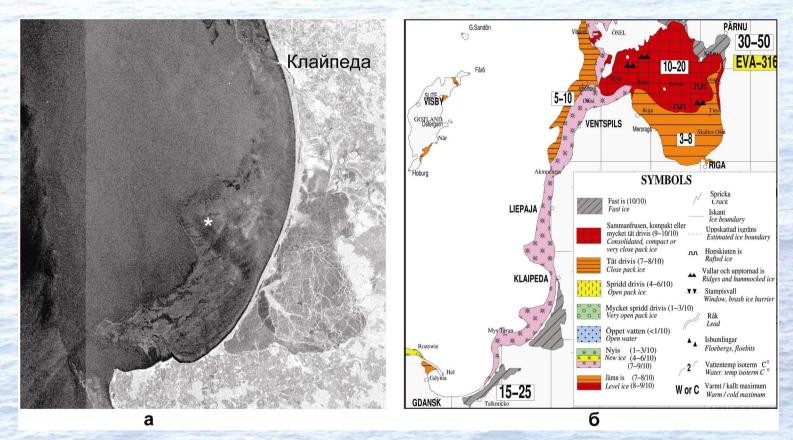
возмущение в верхнем слое моря, быстро убывающее с глубиной



приповерхностная плотностная стратификация, суточный термоклин


возмущения в море становятся существенно двумерными

«Двумерная» турбулентность характеризуется увеличением масштаба и одновременно завихренностью


Мелкомасштабные вихри и фронт (3)

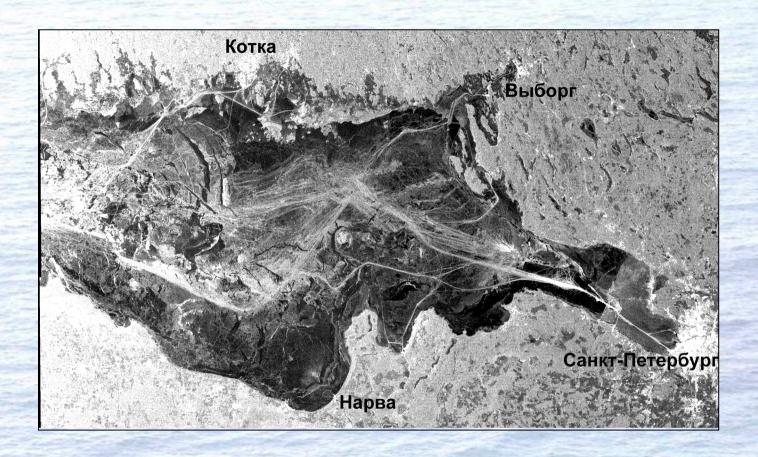
Фрагмент снимка SAR ERS-2 IMM VV от 02.02.2010, Черное море. Стрелками указано положение фронта. Возможно, фронт блокирует распространение вихрей

Мониторинг ледяного покрова (1)

Ледовая обстановка в районе ледостойкой нефтедобывающей платформы Д-6 09.02.2010.

- а) Фрагмент РЛИ ASAR Envisat WSM HH, полученного 09.02.2010 в 08:54 UTC с разрешением 75 м (© ESA). Звездочкой отмечена платформа Д-6.
- б) Карта ледового покрова юго-восточной части Балтийского моря за данное число (http://www.smhi.se)

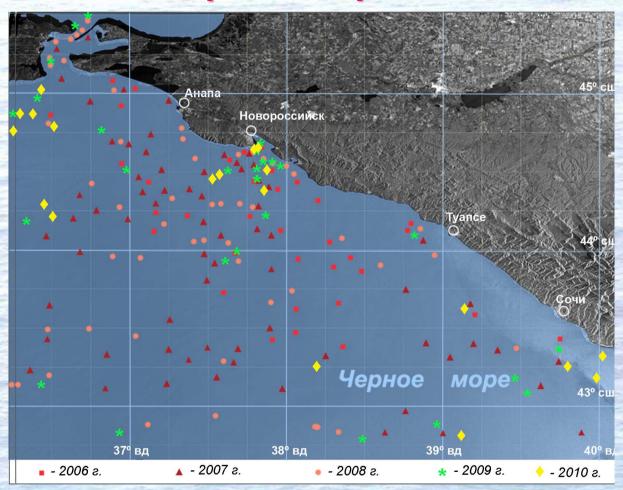
Мониторинг ледяного покрова (2)



Вынос льда из реки Висла.

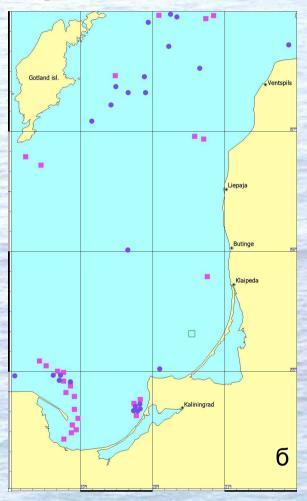
Фрагмент ASAR Envisat WSM HH изображения от 27.01.2010, 09:05 UTC. Пространственное разрешение 75 м.

Мониторинг ледяного покрова (3)


Корабельные следы во льдах в Финском заливе. Фрагмент снимка ASAR Envisat WSM HH от 17.02.2010, 19:31 UTC. Размер пикселя 75 м. (© ESA)

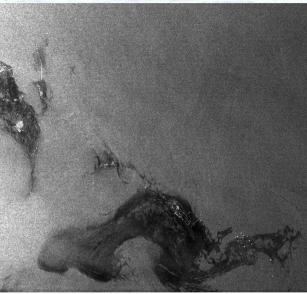
Мониторинг антропогенных загрязнений. Черное море

Загрязнения в районе сброса сточных вод. Фрагмент ASAR Envisat IMP VV изображения от 29.09.2010, 07:28 UTC. Пространственное разрешение 12,5 м

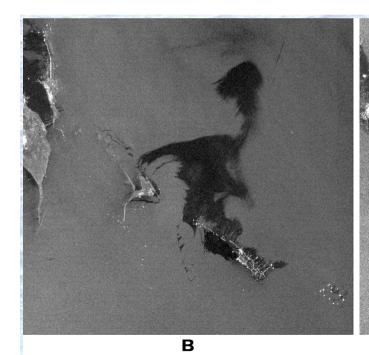

Мониторинг антропогенных загрязнений. Черное море

Обобщенная карта-схема значительных нефтяных загрязнений российского сектора Черного моря, составленная на основе дешифрирования данных спутниковой радиолокации высокого разрешения, полученных в 2006 – 2010 гг.

Мониторинг антропогенных загрязнений. Балтийское море



Обобщенные карты-схемы всех нефтяных пятен, обнаруженных в результате анализа РЛИ: а) с июня 2004 г. по ноябрь 2005 г.;


б) с января 2009 по август 2010. Кружочки – 2009 г., квадратики – 2010. Зеленый квадратик – нефтедобывающая платформа Д-6

Нефтяные загрязнения у Нефтяных камней

а б

Г

Загрязнения акватории нефтяных платформ в районе Нефтяных камней, проявляющиеся на РЛИ при различных метеорологических условиях:

- а) Ветер северный 8 м/с. Фрагмент Landsat 5 ТМ изображения от 30.05.2009 07:07 UTC, зона солнечного блика. Композит 7, 4 и 2 каналов. Разрешение 30 м. (http://glovis.usgs.gov/)
- б) Ветер северный 5м/с с переходом на южный. Фрагмент РЛИ Envisat ASAR WSM HH от 31.05.09 18:20 UTC.
- в) Умеренный юговосточный ветер 4 м/с. Фрагмент РЛИ Envisat ASAR WSM HH от 28.07.10 18:26 UTC.
- г) Сильный северный ветер 12 м/с. Фрагмент РЛИ Envisat ASAR WSM HH от 19.06.09 18:23 UTC. Разрешение всех РЛИ 75 м. (© ESA)

«Белые» следы за кораблями

Заключение (1)

- При проведении ежедневного оперативного спутникового мониторинга, который осуществляется над акваториями Черного, Балтийского и Каспийского морей начиная с 2009 года, получено огромное количество спутниковой информации.
- Только радиолокационных данных высокого разрешения ASAR Envisat и SAR ERS-2 до октября 2010 года получено 1806 изображений (!).
- Практически ко всем из них была подобрана комплиментарная информация: данные оптических и ИК сенсоров и данные метеостанций.
- **Огромный массив данных требует тщательной совместной обработки и осмысления.**
- **Остро назрела необходимость создания полноценной базы данных всех результатов мониторинга**

Заключение (2)

Предварительный анализ накопленных данных уже на настоящем этапе позволил:

- ▶ выявить и детально изучить внутренние волны в бесприливных морях, определить районы их наиболее частых поверхностных проявлений, высказать предположения об источниках их генерации;
- ▶ провести исследование мелкомасштабных вихревых структур и выявить их связь с фронтальными зонами в атмосфере и море;
- ➤ продолжить мониторинг антропогенных загрязнений морской поверхности и провести сравнение современного состояния с предыдущими годами;
- начать работу по мониторингу ледового покрова в Балтийском, Азовском морях и в северной части Каспийского моря

Благодарности

Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (проекты № 08-05-00831-а и 10-05-00428-а).

Спутниковые радиолокационные данные предоставлены Европейским космическим агентством в рамках проектов С1Р.6342, AOBE 2775 и C1P.1027.

Тематическая обработка данных MODIS Aqua/Terra и AVHRR NOAA выполнена

Дмитрием Соловьевым и Сергеем Станичным, Морской гидрофизический институт, Севастополь

Спасибо

3a

внимание