Термодинамический подход для

дистанционного картографирования уровня антропогенной нагрузки на экосистемы

В. И. Горный, С.Г.Крицук, И.Ш.Латыпов

Учреждение Российской академии наук Санкт-Петербургский научно-исследовательский центр экологической безопасности РАН

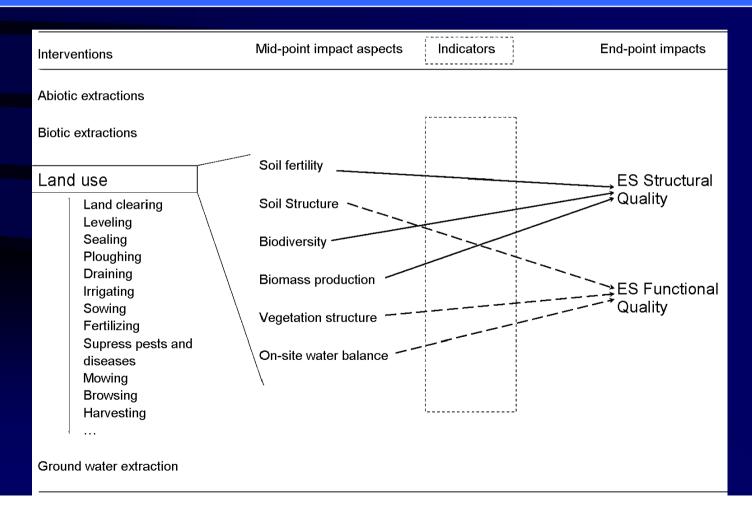
E-mail: v.i.gornyy@ecosafety-spb.ru

Victor I. Gornyy, Sergei G. Kritsuk, Iscander Sh. Latypov. Remote Mapping of Thermodynamic Index of Ecosystem Health Disturbance. Journal of Environmental Protection, 2010, No 1, pp. 242-250

Основная тенденция в развитии методов дистанционного зондирования - автоматизация опознавания объектов, процессов, в частности, и уровня антропогенного воздействия (АВ) на экосистемы (ЭС).

Состояние проблемы количественного картографирования уровня АВ на ЭС

Европейский проект:


"Quantitative environmental assessment of land use in relation to the product life cycle"

- индикаторы биогеохимических и энергетических циклов;
- индикаторы доступной и потенциальной *продуктивности* экосистем;
- -индикаторы *биоразнообразия* экосистем;
- нормализованный показатель редукции экосистемы;
- нормализованный индекс уязвимости экосистемы;
- индикаторы *культурной ценности* участков, подвергшихся антропогенной нагрузке;
- индикаторы миграции и расселения;

Состояние проблемы

В. Ачтен с коллегами предложили 22 индикатора, характеризующих реакцию ЭС на АВ!!!

(Achten W.M.J., Mathijs E., Muys B. Proposing a life cycle land use impact calculation methodology. 6-th International Conference on LCA in the Agri-Food Sector, Zurich, November 12–14, 2008. Nature Precedings 2009)

Методология научных исследований

Два подхода:

- микроскопический: статистическая термодинамика;
- макроскопический: теория теплопроводности.

Термодинамический подход к изучению реакции ЭС на антропогенное воздействие

Т. Вагендорп и др. (T.Wagendorpet al. Land use impact evaluation in life cycle assessment based on ecosystem thermodynamics. Energy, Vol. 31, 2006. pp.112–125.

AB - снижает уровень эксергии в ЭС: - уменьшение биомассы; - потеря видов; - ухудшение функционирования ЭС, что проявляется в:

- биотическом повреждении ЭС при рассеивании токсикантов;
- потере растительностью контроля над потоками воды и питательных веществ, повышении их выноса из экосистемы;
- «энтропизации» почвы: окисление органики, потеря микропористости, потеря почвенного слоя за счет эрозии, депонирование токсических веществ и засоление, опустынивание;
- потере потенциальных множественных путей для деградации энергии.

Предложенные термодинамические индексы, картографируемые дистанционно

1. <u>Индекс теплового отклика экосистемы</u> (thermal response number – *TRN*) (по Luvall J.C., and H.R.Holbo):

$$TRN = R_n \times \Delta \tau / \Delta T; \tag{1}$$

где: R_n – приходящая коротковолновая и длинноволновая радиация; $\Delta \tau$ - временной интервал между двумя тепловыми аэросъемками;

 ΔT – изменение температуры поверхности экосистемы за время $\Delta \tau$.

2. Индекс диссипации солнечной энергии (solar energy dissipation – SED) (по Luvall J.C., and H.R.Holbo):

$$SED = R_n / Q^*; (2)$$

где: $Q^* = (1 - a) Q$ - поглощенная ЭС плотность потока коротковолновой солнечной радиации; a - альбедо поверхности;

 ${\it Q}$ - плотность потока коротковолновой солнечной радиации, падающей нормально к поверхности.

Термодинамическая мера уровня АВ на ЭС

(По Jorgensen S. E., Svirezhev Yu.M. Towards a Thermodynamic Theory for Ecological Systems. – Oxford: Elsever, 2004. -366 p.)

 σ_{τ} - скорость генерации энтропии в ЭС, под АВ за период - $\Delta \tau$.

$$\sigma_{\tau} = [S(\tau_0 + \tau) - S(\tau_0)] / T = [W_f + W_{ch} + (P - P_0) \Delta \tau] / T$$
 (3)

где: S — энтропия;

 $\Delta au = au - au_{\mathcal{O}}$ - продолжительность антропогенной нагрузки; W_f - полная энергетическая нагрузка за период времени Δau .

 W_{ch} - полная химическая нагрузка за период времени $\Delta \tau$.

P- P_0 – прирост полной продуктивности ЭС за период времени $\Delta \tau$.

Теоретическая основа для создания термодинамического индекса АВ (ТИАВ)

Основные положения:

- ЭС природный комплекс, образованный живыми организмами и средой их обитания (окружающей средой (ОС), связанными между собой обменом веществ и энергии.
- Эксергия количество работы, которую ЭС может произвести, когда она возвращается в состояние термодинамического равновесия с окружающей средой.

"Расход эксергии и генерация энтропии – два различных описания одной и той же реальности"

(С.Йоргенсен и Ю.Свирежев).

«Энтропийный насос», расходуя эксергию солнечной радиации, поглощенной ЭС, удаляет энтропию, которая нормально генерируется в ЭС,

(Ю.Свирежев).

Баланс эксергии в ЭС, подвергшейся АВ

Баланс плотности потоков эксергии в нарушенной ЭС:

$$Ex_o = Ex_c + Ex_e + Ex_a \tag{4}$$

Где: Ex_o - плотность потока эксергии поглощенной ЭС солнечной радиации, Bm/m^2 ;

 Ex_c - плотность потока эксергии, затраченной на депонирование углерода в биомассе, Bm/m^2 ;

 Ex_e - плотность потока эксергии, затраченной на вывод энтропии из ЭС при отсутствии АВ («энтропийный насос»), Bm/m^2 ;

 Ex_a - плотность потока эксергии, затраченной на парирование AB, Bm/m^2 .

Сравнение фоновой и нарушенной ЭС

$$Ex_{o}^{b} = Ex_{e}^{b} + Ex_{c}^{b}$$

Вычитая из (5) выражение (4) получаем:

$$\Delta E x_o = \Delta E x_c + \Delta E x_e - E x_a$$

Где:
$$\Delta E x_o = E x_o^b - E x_o$$
 ; и т.д.

Термодинамический индекс АВ (ТИАВ)

Из (4) относительная эксергия, затрачиваемая ЭС на парирование АВ:

$$Ex_a/Ex_o = \Delta Ex_c/Ex_o + \Delta Ex_e/Ex_o - \Delta Ex_o/Ex_o; \qquad (7)$$

Предположения:

- 1) ЭС не значительно выведена из равновесия.
- 2) Вывод из ЭС энтропии, наведенной АВ происходит за счет снижения скорости депонирования углерода.
- 3) В начальный момент AB: $O(\Delta Ex_e) = O(\Delta Ex_o) \longrightarrow O$

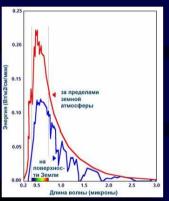
Термодинамический индекс АВ (ТИАВ)

ТИАВ - количественный критерий АВ на ЭС

$$I_T \sim Ex_a / Ex_o \sim \Delta Ex_c / Ex_o \tag{8}$$

ТИАВ - относительная доля, поглощенной ЭС эксергии солнечной радиации, затрачиваемая ЭС на парирование АВ.

Если ЭС не подвергалась AB, то $I_T = 0$.


Если ЭС подверглась AB, то $1 > I_T > 0$.

Расчет ТИАВ

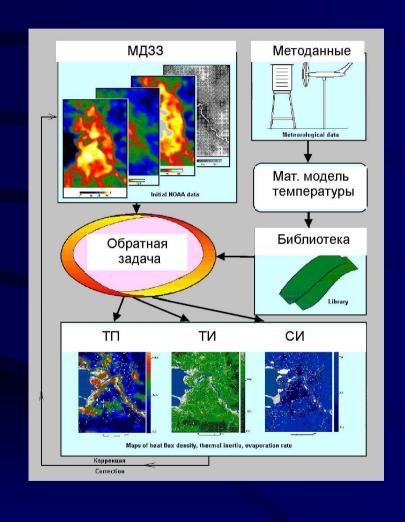
Для депонирования 1 кг углерода необходимо испарить 879 кг воды; Расход эксергии на депонирование углерода: 278 *10⁶ Дж/(кгС);

$$Ex_c = 3,66 *E, Bm/M^2;$$
 (9)

Где: *E* – среднесуточная скорость испарения влаги с поверхности ЭС, *мм/сут*.

$$Ex_o = \int_{\Omega} Q^{out}(\nu) Ln[Q^{out}(\nu)/Q^{in}(\nu)] d\nu + R =$$

$$= R[1 + \alpha(K + \ln \alpha - 1)/(1 - \alpha)]; \qquad (10)$$


R- радиационный баланс; Q^{out} α — альбедо поверхности ЭС; K — мера Кульбака приращения информации;

 Q^{out} и Q^{in} — плотность потока уходящей и падающей солнечной радиации;

$$K = \sum_{i=1}^{n} p_i \log(p_i/p_i^0);$$

 p_i^0, p_i - вероятность события, соответственно, до и после испытания.

Алгоритм картографирования среднесуточной скорости испарения влаги по данным дистанционных съемок

Требования к тестовому полигону

- 1. Наличие широкого диапазона уровня АВ на ЭС.
- 2. Однородность окружающей ЭС.
- 3. «Точечный» характер источника АВ.

Chelyabinsk Legend

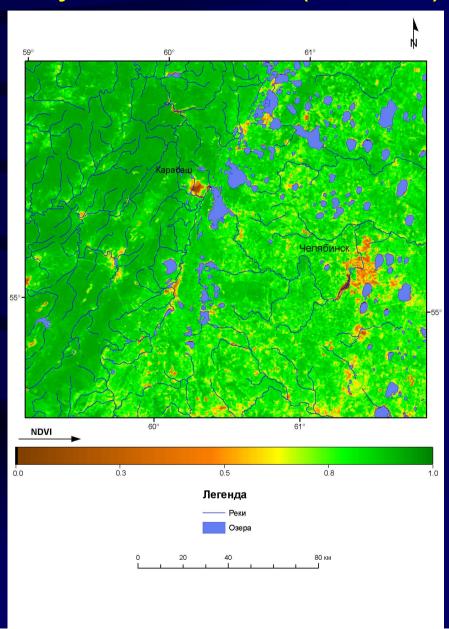
Ю. Уральский тестовый полигон

Космический снимок г. Карабаш

ОАО «Карабашмедь» - выброс в атмосферу ~ 170 тыс. $m SO_2 / sod$.

Всего в атмосферу выброшено ~12 *млн.т* поллютантов.

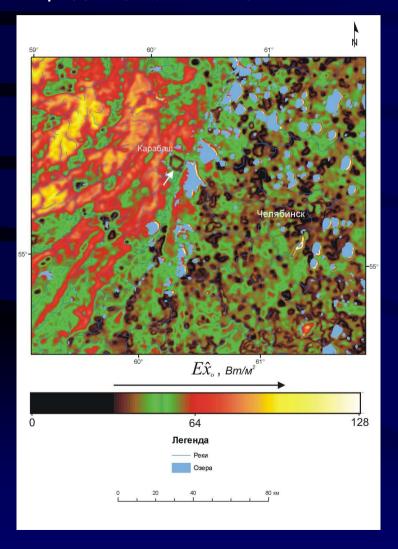
Материалы

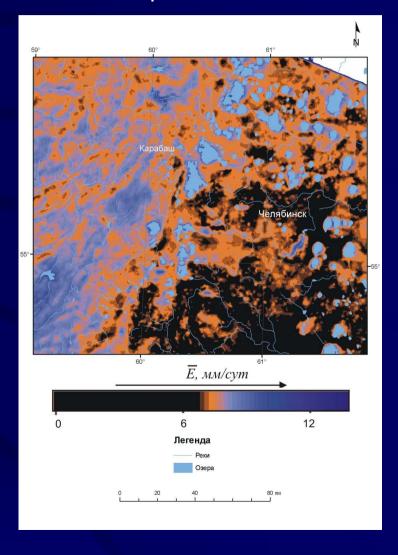

Спутниковые данные, использованные для картографирования плотности потока эксергии, поглощенной ЭС

Дата	Время (Гринвич), ч:мин	Спутник	Съемочная система	Каналы
4 июня 2009	7:00	Terra	MODIS	1-16

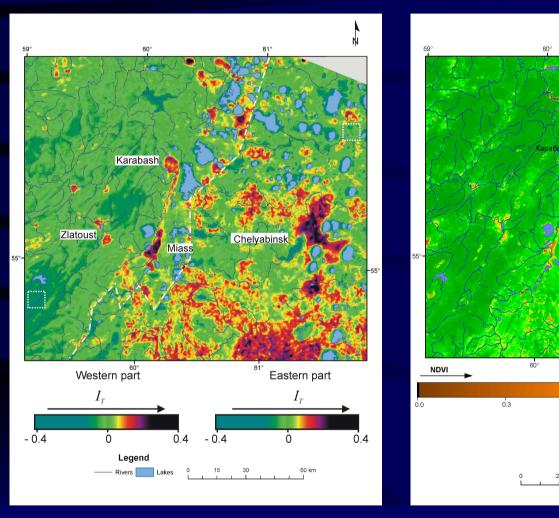
Спутниковые данные, использованные для картографирования скорости испарения влаги с поверхности ЭС

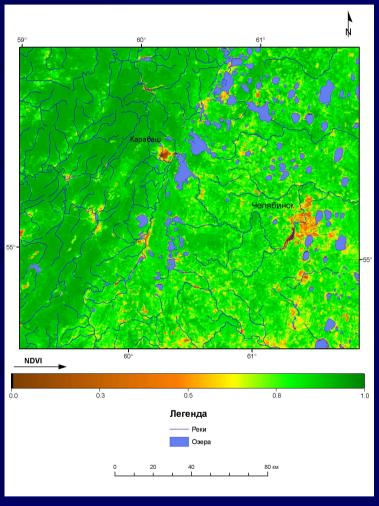
Дата	Время (Гринвич), ч:мин	Спутник	Съемочная система	Каналы
4 июня 2009	07:00	NOAA-18	AVHRR	4,5
4 июня 2009	07:00	Terra	MODIS	1-7,31,32
4 июня 2009	08:50	Aqua	MODIS	1-7,31,32
4 июня 2009	15:23	NOAA-17	AVHRR	4,5
4 июня 2009	18:15	Terra	MODIS	31,32
4 июня 2009	22:00	Aqua	MODIS	31,32
5 июня 2009	01:31	NOAA-15	AVHRR	4,5
5 июня 2009	05:35	NOAA-17	AVHRR	4,5
5 июня 2009	07:45	Terra	MODIS	1,2,31,32
5 июня 2009	07:55	Aqua	MODIS	1,2,31,32
5 июня 2009	21:25	Aqua	MODIS	31,32

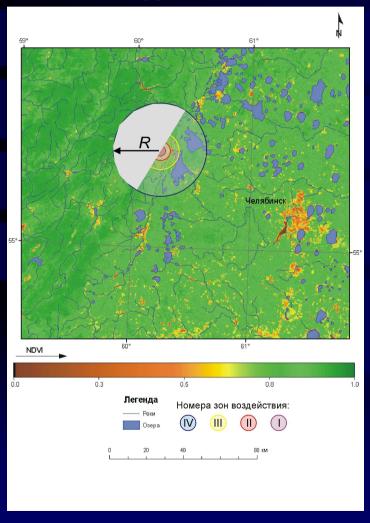

Вегетационный индекс по материалам съемки спутником Terra(MODIS)

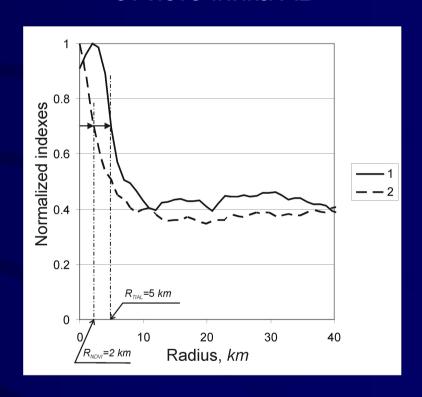


Картографирование ТИАВ по материалам съемок спутниками EOS


Плотность потока эксергии солнечной Среднесуточная скорость радиации, поглощенной ЭС

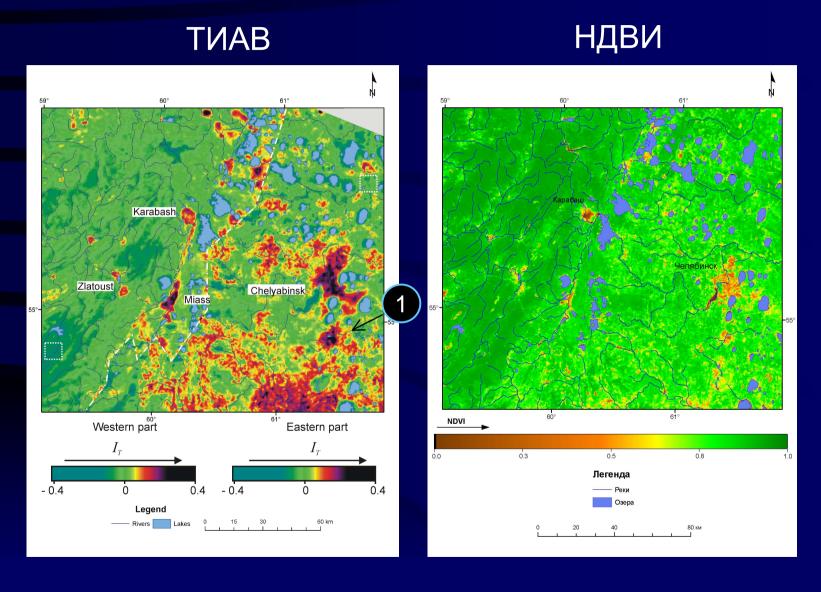

испарения влаги


Сравнение чувствительности ТИАВ и НДВИ к АВ ТИАВ НДВИ



Количественное сравнение чувствительности ТИАВ и НДВИ к АВ

Геометрия осреднения индексов



Изменение нормализованных индексов с удалением от источника AB

- 1. TИAB / TИAB_{max};
- 2. $(1-НДВИ)/(1-НДВИ_{max});$

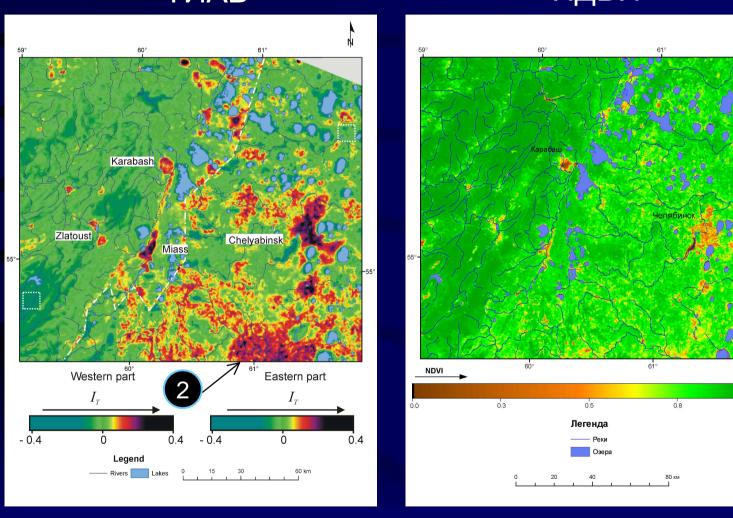
Эффективность обнаружения источников АВ с помощью ТИАВ и НДВИ

Бур

Буроугольный разрез Коркино

Глубина: 480 - 500 м

Космический снимок

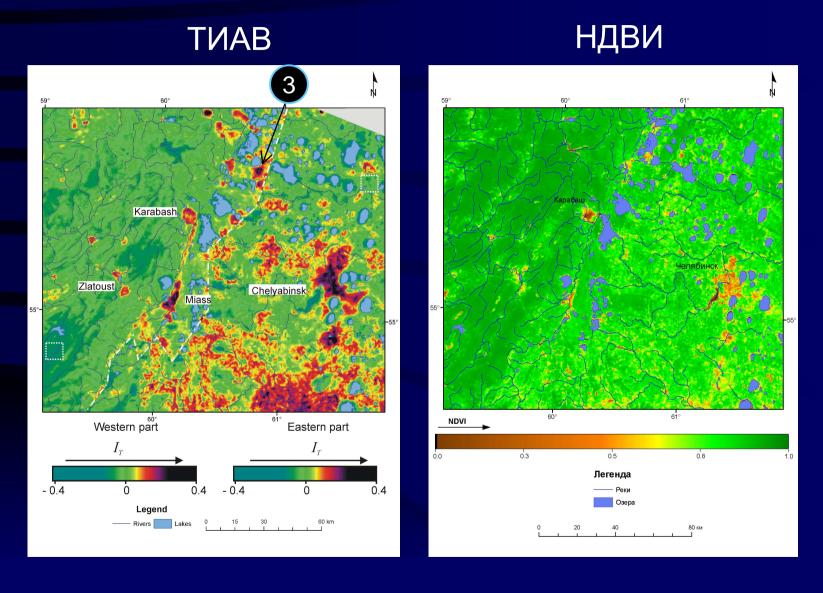

Фото

Эффективность обнаружения источников АВ с помощью ТИАВ и НДВИ

Южно-Уральская и Троицкая ГРЭС

Суммарная мощность ~ 3000 МВт

Космический снимок Троицкой ГРЭС

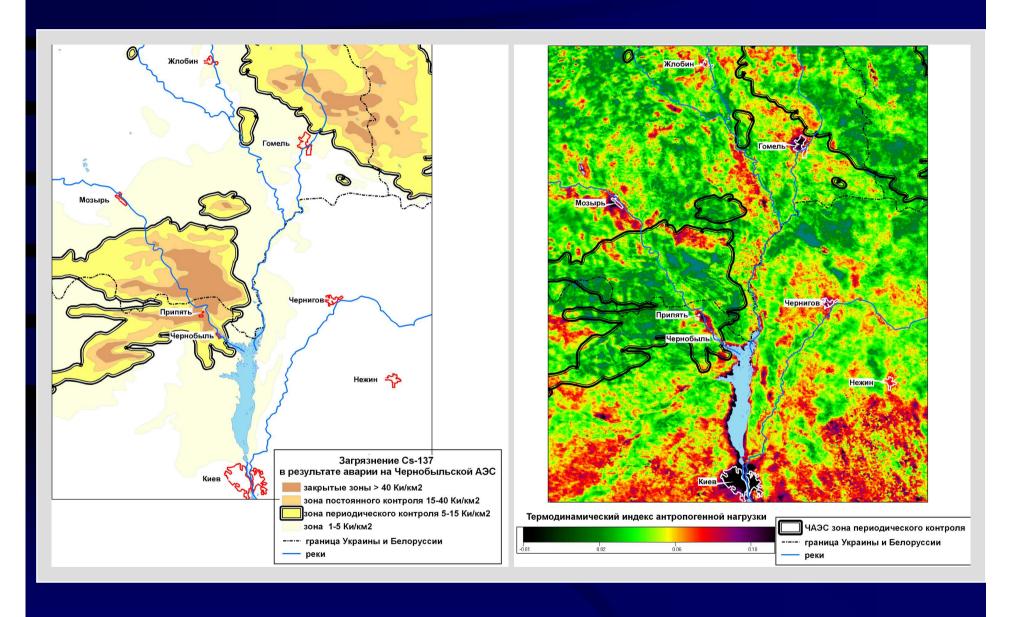

Фото Троицкой ГРЭС

Установленная электрическая мощность: 2 059 МВт

Эффективность обнаружения источников АВ с помощью ТИАВ и НДВИ

(3) Химкомбинат ПО «Маяк»

Космический снимок


Фото

Озеро Карачай

В оз. Карачай складировано: 120 млн Кюри радиоактивных материалов: цезий – 137 и стронций – 90.

ТИАВ земель зараженных после аварии на ЧАЭС

Заключение

- 1. Существующие методы оценки реакции ЭС на АВ чрезвычайно трудоемки, что затрудняет их применение в практике экологического мониторинга.
- 2. Используя термодинамический подход, исходя из баланса эксергии ЭС выведен ТИАВ.
- 4. Разработана и реализована методика дистанционного картографирования ТИАВ.
- 5. Показано преимущество ТИАВ перед НДВИ в чувствительности к АВ.

2011 г. – 25 лет со дня Чернобыльской аварии

Предложение:

Посвятить следующую конференцию проблеме дистанционного мониторинга ионизирующих излучений