Сезонная изменчивость суточных и полусуточных вариаций F2 слоя над Иркутском по данным ионосферного радиозондирования

Н.А. Золотухина, Н.М. Полех, Е.Б. Романова, А.С. Полякова

Институт солнечно-земной физики Сибирского отделения РАН, Иркутск, Россия E-mail: zolot@iszf.irk.ru

Исследованы изменения критической частоты (foF2) и высоты максимума (hmF2) F2 слоя над Иркутском (52,5 °N, 104,0 °E) в 2003–2011 гг. Вариации foF2 и hmF2 содержат составляющие с периодами T \approx 24/n часов (n = 1–7). Амплитуда суточной составляющей foF2/hmF2 плавно меняется от максимальной зимней до минимальной летней. Амплитуда полусуточной составляющей foF2 меняется резко, образуя в ноябре–январе узкий зимний максимум. Фаза суточной составляющей foF2 постепенно увеличивается на 4–6 часов при переходе от зимы к лету, а полусуточной – почти постоянна зимой/летом и резко уменьшается (увеличивается) на 2–3 часа вблизи весеннего (осеннего) равноденствия. Фаза суточной составляющей hmF2 слабо меняется в пределах 1130–1300 LT, а полусуточной – уменьшается (увеличивается) на 4–6 часов в феврале (октябре).

Ключевые слова: параметры F2 слоя ионосферы, сезонные вариации, суточная и полусуточная составляющие.

Введение

Процессы, влияющие на крупномасштабную структуру F2 области ионосферы, хорошо известны (Брюнелли и Намгаладзе, 1988). Однако значительные различия между эмпирическими и модельными оценками параметров ионосферы стимулируют дальнейшее исследование этой области на основе длинных рядов однородных данных (Mendillo et al., 2002; Romanova et al., 2006; Pirog et al., 2009). Результаты измерений ионосферы, как и других физических объектов, можно представить в виде суммы непериодической и периодических функций (Серебренников и Первозванский, 1965). Возможно, что некоторые из них соответствуют реальным возмущениям, развивающимся в ионосфере под действием других геосфер и солнечной радиации (Ишанов и др., 2005; Tamer et al., 2009; Pirog et al., 2010).

Наличие 1–7 гармоник суточной составляющей в вариациях критической частоты (foF2) и высоты максимума (hmF2) среднеширотного F2 слоя обнаружено в (Zolotukhina et al., 2011). Соответствующие этим гармоникам колебания могут возникать из-за суточного вращения Земли, модулирующего интенсивность фотохимических, термодинамических и электродинамических процессов на фиксированной долготе (Forbes, 2009). С суточным периодом меняется поток электромагнитного и корпускулярного излучения Солнца, поток поступающих из магнитосферы частиц, интенсивность ионосферного тока. Все это приводит к квазипериодическим изменениям состава атмосферы, температуры и скорости частиц, а через ударную ионизацию и химические реакции – скорости ионизации и рекомбинации.

Целью работы является анализ спектрального состава вариаций foF2 и hmF2, наблюдавшихся над Иркутском (52,5 °N, 104,0 °E) в течение 9 лет. Мы покажем, что составляющие с периодами суточных гармоник присутствуют во всех месячных рядах foF2 и hmF2, независимо от уровня солнечной и геомагнитной активности. Далее мы рассмотрим сезонные изменения амплитуды и фазы суточной и полусуточной составляющих и сравним их с обнаруженными в (Zolotukhina et al., 2011) для одного, 2007 г.

Исследование основано на однородных рядах ионосферных данных, полученных с 15-минутным разрешением в 2003–2011 гг. с помощью цифрового дигизонда DPS-4. Для описания солнечной и геомагнитной активности использованы индекс F10.7 и средние дневные значения AE индекса (сайт http://omniweb.gsfc.nasa.gov/form/dx1.html). В рассматриваемом временном интервале среднегодовое значение F10.7 менялось от максимального F10.7 = 126 в 2003 г. до минимального F10.7 = 68–72 в 2007–2009 гг. и увеличилось до F10.7 = 112 в 2011 г. Среднегодовое значение AE индекса было максимально в 2003 г. (AE = 328 нTл), минимально в 2009 г. (AE = 69 нTл), затем увеличилось до AE = 139 нTл в 2011 г. Для анализа рядов foF2 и hmF2 использованы методы, описанные в (Zolotukhina et al., 2011).

Результаты спектрального анализа

На *рис. 1* приведены амплитудные спектры вариаций foF2 и hmF2 для 5 месяцев 2003 и 2007 гг. На всех спектрах отчетливо видны от 3 до 7 пиков: главный, с центральным периодом $T_1 \approx 24$ часа, и 2–6 более слабых, близких по периодам к $T_n \approx 24/n$ часов (n = 2–7). Число пиков, заметно превышающих фоновый уровень, максимально в спектрах января 2007 г. (7 пиков) и минимально в июньских спектрах (3 пика). Слабые пики на $T_n \approx 24 / n$ часов (n = 4–7) присутствуют во всех спектрах, кроме июньских.

Спектры вариаций foF2 и hmF2 для остальных 98 месяцев подобны показанным на *рис. 1*. Пики на T_{1-3} с амплитудами, превышающими фоновый уровень, видны на всех спектрах. Пики на $T_4 - T_7$ тоже видны на всех (за исключением летних и некоторых весенних) месячных спектрах, хотя иногда их амплитуды сравнимы с фоном. Значения $T_1 - T_7$ совпадают в пределах спектрального разрешения с приведёнными в (Zolotukhina et al., 2011). Узость ($\Delta f/f_{max} \leq 0.1$; f_{max} – частота максимума пика, Δf – его ширина на уровне 0,7 от высоты) и большие амплитуды пиков на $T_{1,2} \approx 24,12$ часов позволяют выделить формирующие их колебания из исходных рядов без значительных искажений амплитуды сигнала.

Сезонные вариации суточной и полусуточной составляющих foF2

Для исследования сезонных вариаций амплитуды и фазы суточных и полусуточных составляющих мы провели фильтрацию и выделили колебания в двух полосах периодов, центрированных на $T_1 \approx 24$ часа и $T_2 \approx 12$ часов. Таким способом были созданы 4 ряда дискретных значений отфильтрованных ионосферных параметров. Это ряды oF2₁ и hmF2₁, содержащие суточные колебания, и ряды foF2₂ и hmF2₂, состоящие из полусуточных колебаний. В отфильтрованных рядах находились экстремальные значения foF2_{1,2} и hmF2_{1,2}, определялась их величина (амплитуда колебаний – AfoF2_{1,2} и AhmF2_{1,2}) и фаза. Как это принято в ионосферных исследованиях (см., например, Mendillo et al., 2002)), значения фазы соответствуют местному времени (LT) регистрации экстремумов отфильтрованных рядов – максимумов foF2 и минимумов hmF2.

Рис. 1. Амплитудные спектры вариаций критической частоты (толстая линия) и высоты (тонкая линия) F2 слоя над Иркутском, вычисленные по месячным рядам 15-минутных ионосферных данных

Месяц	Фаза, LT													
год	1	2	3	4	5	6	7	8	9	10	11	12		
2003	1300	1315	1415	1500	1615	1745	1715	1545	1430	1345	1245	1230		
2004	1300	1300	1345	1445	1530	1730	1700	1530	1400	1245	1230	1200		
2005	1245	1245	1330	1430	1530	1645	1545	1545	1430	1230	1200	1145		
2006	1200	1230	1315	1415	1545	1545	1600	1500	1345	1215	1200	1200		
2007	1215	1215	1315	1415	1445	1600	1500	1445	1330	1230	1145	1145		
2008	1200	1230	1315	1400	1615	1600	1530	1415	1330	1200	1145	1130		
2009	1145	1200	1245	1415	1500	1600	1515	1400	1300	1200	1145	1115		
2010	1200	1230	1300	1430	1530	1615	1545	1445	1315	1245	1200	1145		
2011	1200	1245	1330	1430	1545	1745	1700	1515	1430	1315	1245	1215		
Медиана	1215	1230	1315	1430	1530	1615	1545	1500	1345	1230	1200	1145		

Таблица 1. Месячные медианные значения фазы суточной составляющей foF2

На *рис.* 2 слева показаны годовые вариации месячных медианных значений амплитуды и фазы $foF2_1$, справа – $foF2_2$. Информация о значениях фазы дана в *табл.* 1, 2. В нижней строчке таблиц приведены медианные значения фазы, определенные для каждого месяца по 9-летней выборке. Для $foF2_2$ предоставлена фаза вечерне-полуночного максимума. Сезонные вариации параметров утрене-полуденного максимума $foF2_2$ подобны показанным, но значения фазы – на 12 часов меньше (больше). Для описания рассеяния месячных выборок, выбраны нижняя и верхняя квартили.

Месячные медианы AfoF2₁ имеют широкий полугодовой пик, нижние квартили которого в октябре-марте больше, чем верхние квартили в июне и июле. Значения AfoF2₁ постепенно, в течение четырех месяцев, уменьшаются при переходе от зимы к лету и увеличиваются при обратном переходе. Отношение максимальных зимних к минимальным летним значениям AfoF2₁ меняется от 3,8 в 2008 г. до 7,5 в 2011 г. Фаза foF2₁ плавно меняется от 1100–1300 LT в декабре–январе до 1500–1800 LT в июне–июле.

Месяц	Фаза, LT												
год	1	2	3	4	5	6	7	8	9	10	11	12	
2003	0045	0045	0000	2145	2100	2115	2115	2100	2115	0030	0045	0030	
2004	00455	0045	2300	2130	2100	2115	2130	2145	2130	0000	0030	0045	
2005	0045	0115	2300	2100	2030	2115	2100	2100	2100	0000	0030	0030	
2006	0030	0030	0000	2100	2030	2115	2115	2100	2115	0000	0030	0030	
2007	0045	0045	0015	2115	2100	2130	2100	2100	2200	0015	0015	0030	
2008	0030	0045	2345	2100	2100	2115	2115	2115	2200	0015	0030	0030	
2009	0045	0015	0015	2115	2100	2115	2100	2100	2200	0015	0015	0015	
2010	0030	0030	0000	2115	2100	2115	2100	2100	2130	0015	0030	0015	
2011	0045	0045	2315	2130	2045	2130	2130	2115	2115	0000	0045	0045	
Медиана	0045	0045	0000	2115	2100	2115	2115	2100	2130	0015	0030	0030	

Таблица 2. Месячные медианные значения фазы полусуточной составляющей foF2

Рис. 2. Сезонные вариации: а – амплитуды и в – фазы суточной, б – амплитуды и г – фазы полусуточной составляющих foF2. Тонкие линии, точечная и толстая сплошная линии с кружками показывают, соответственно, вариации 2004–2010, 2003 и 2011 гг. Серым цветом для каждого года закрашены площади между верхней и нижней квартилями, образовавшие при наложении единую структуру

Основной зимний пик месячных медиан AfoF2₂ уже, чем пик AfoF2₁. Только в ноябре–январе нижние квартили AfoF2₂ лежат выше верхних квартилей других месяцев. Видны минимумы AfoF2₂ в месяцы равноденствия и слабый пик в мае, июне. В отличие от плавных изменений параметров foF2₁, амплитуда и фаза foF2₂ меняются резко, за месяц. Значения AfoF2₂ уменьшаются (увеличиваются) с января по март (с октября по декабрь) в 2–4 раза. Фаза foF2₂ нарастает (убывает) на 2–3 часа между мартом–апрелем (сентябрем–октябрем). Виден слабый, ~ 0,5 часа, рост фазы в июне–июле. Подчеркнем различие между знаками изменений фаз foF2₁ и foF2₂: летняя фаза foF2₁ на 4–6 часов больше, а foF2₂ на 2–5 часов меньше зимней. В месяцы максимальных AfoF2₂ (ноябрь–январь) фаза утренеполуденного максимума foF2₂ (не представлена на *рис. 2* и в *табл. 2*), равна 1215–1315 LT и почти совпадает с фазой foF2₁ (1115–1345 LT).

Сезонные вариации суточной и полусуточной составляющих hmF2

Сезонные вариации месячных медианных значений амплитуды и фазы $hmF2_1$ и $hmF2_2$ показаны на *рис. 3* слева и справа соответственно. По форме сезонные изменения AhmF2_1 подобны изменениям AfoF2_1: месячные медианы и квартили AhmF2_1 в октябре– марте выше, чем в июне и июле. Соотношение между максимальными и минимальными значениями AhmF2_1 равно 1,6–1,9. Фаза $hmF2_1$ почти не меняется. Её медианы (*табл. 3*) и квартили лежат в диапазоне 1130–1300 LT. В работе (Salah and Holt, 1974) показано, что примерно в это же время (11,6–11,9 LT) суточная составляющая направленного на север нейтрального ветра максимальна.

Рис. 3. Сезонные вариации: а – амплитуды и в – фазы суточной, б – амплитуды и г – фазы полусуточной составляющих hmF2 в 2003–2011 гг. Так же, как на рис. 2, линии показывают сезонные изменения медианы, серые площади – изменения верхних и нижней квартилей. Точками и вертикальными отрезками на панели (г) обозначены медианы и квартили фазы полусуточной составляющей в январе 2003 г., ноябре и декабре 2011 г., лежащие вне полосы перекрывающихся областей

Месяц	Фаза, LT												
200	1	2	3	4	5	6	7	8	9	10	11	12	
2003	1300	1300	1230	1200	1200	1215	1200	1200	1200	1230	1230	1230	
2004	1245	1245	1230	1200	11455	1145	11455	1145	1200	1200	1200	1200	
2005	1230	1230	1230	1200	1200	1200	1200	1145	1200	1200	1200	1215	
2006	1200	1215	1230	1200	11455	1145	11455	1145	11455	1200	1145	1200	
2007	1215	1230	1230	1145	1200	1215	12155	1200	11455	11455	1145	1200	
2008	1215	1215	1215	1215	1145	1130	1145	1145	1145	1145	1145	1145	
2009	1200	1215	1215	1200	11455	1145	11455	1145	1130	11455	1145	1145	
2010	1215	1215	12155	1200	1200	1145	1200	1200	1200	1200	120075	1200	
2011	1200	1230	1230	1215	1200	1215	1200	1200	1200	1200	1215	1215	
Медиана	1215	1230	1230	1200	1200	1200	1200	1145	1200	1200	1200	1200	

Таблица 3. Месячные медианные значения фазы суточной составляющей hmF2

Таблица 4. Месячные медианные значения фазы полусуточной составляющей hmF2

Месяц	Фаза. LT													
200	1	2	3	4	5	6	7	8	9	10	11	12		
2003	2000	2000	1915	1900	1845	1915	1900	1830	1930	1945	2115	2300		
2004	2345	2030	1930	1845	1830	1815	1800	1830	1845	1900	2215	0045		
2005	0100	1900	1915	1845	1830	1815	1830	1845	1900	1915	2230	2330		
2006	0030	2215	1915	1845	1845	1815	1730	1830	1915	2130	0045	0015		
2007	0015	2030	1915	1830	1830	1815	1800	1800	1815	2145	2315	0000		
2008	0030	0045	1815	1815	1815	1800	1730	1745	1800	2215	2345	0015		
2009	0030	0000	1830	1815	1830	1830	1915	1815	1845	2300	2330	2345		
2010	0000	2130	1830	1815	1830	1830	1830	1830	1830	2000	2215	0045		
2011	0030	2015	1915	1830	1830	1830	1830	1915	1930	1930	2030	1915		
Медиана	0030	2030	1915	1845	1830	1815	1830	1830	1845	2000	2230	0000		

На всех годовых вариациях AhmF2₂ отчетливо виден максимум амплитуды в мартеапреле; на некоторых – в июле, декабре и январе. Большое рассеяние месячных выборок hmF2₂ не позволяет считать эти максимумы достоверными. Фазы hmF2₂ (*maбл. 4*), за исключением января 2003 г., ноября и декабря 2011 г., максимальны в ноябре–январе и минимальны в марте–сентябре. Судя по квартилям, различия между зимними и весенне-летними значениями фаз достоверны. В 2004–2010 гг. фаза hmF2₂ резко уменьшается (увеличивается) на 4–6 часов между январем–мартом (сентябрем–ноябрем). В марте–сентябре фазы hmF2₂ равны 1815–1915 (0615–0715) LT и совпадают со временем максимума полусуточной составляющей направленного на север ветра (Salah and Holt, 1974).

Основные результаты и их обсуждение

Мы показали, что главные тенденции сезонных изменений амплитуды и фазы суточной и полусуточной составляющих foF2 и hmF2 устойчиво повторяются на фазах спада и роста солнечной и геомагнитной активности:

1. Амплитуды суточной и полусуточной составляющих foF2 и суточной составляющей hmF2 максимальны зимой и минимальны летом. Амплитуды суточных составляющих foF2 и hmF2 меняются постепенно, а амплитуда полусуточной составляющей foF2 – резко, образуя в ноябре–январе узкий зимний максимум.

2. Сезонные изменения фаз суточной и полусуточной составляющих foF2 различаются знаком и скоростью. Фаза суточной составляющей плавно увеличивается на 4–6 часов при переходе от зимы к лету и уменьшается при обратном переходе. Фаза foF2₂ резко убывает на 2–3 часа в апреле и нарастает в октябре.

3. Фаза суточной составляющей hmF2 (1130–1300 LT) почти постоянна. Фаза полусуточной составляющей резко меняется от зимней (~ 1200 и 2400 LT) до весенне-осенней (~ 0600–0700 и 1800–1900 LT) в январе-марте и сентябре-ноябре.

На *рис.* 4 показано, что сумма $foF2_1$ и $foF2_2$ воспроизводит зимнюю (полуденные значения foF2 зимой больше чем летом) и суточную (максимум foF2 наблюдается в вечерние часы) аномалии (Брюнелли и Намгаладзе, 1988; Пирог и др., 2000; Goodman, 2005). Формально переход от зимней к суточной аномалии с удлинением светового дня сводится к сезонным изменениям амплитуды и фазы суточных и полусуточных составляющих foF2.

Известны три основных фактора влияния на F2 область среднеширотной ионосферы. Это поток ионизирующего солнечного излучения, состав нейтральной атмосферы и термосферный ветер. Второй и третий факторы зависят от плотности и температуры нейтрального газа, которые тоже регулируются солнечным излучением и в меньшей степени потоком энергии из магнитосферы. Согласно модельным расчётам и экспериментальным данным, второй и третий факторы могут проявиться в сезонных изменениях суточной и полусуточной составляющих foF2 и hmF2 (Romanova et al., 2008).

По основным тенденциям и численным оценкам наши результаты сходны с полученными в (Alcayde, 1974) при исследовании сезонных вариаций температуры кислорода (обозначим ее T_0) в F области ионосферы. Alcayde (1974) показал, что суточная и полусуточная составляющие вносят основной вклад в изменение средних значений T_0 на высотах 200–400 км, а их сумма воспроизводит две особенности сезонных вариаций температуры – узкий зимний пик с максимумом в ~ 1500 LT и широкий летний пик между 1200 и 1900 LT. Согласно (Alcayde, 1974), амплитуды суточной/полусуточной составляющих T_0 минимальны летом. Это соответствует обнаруженным нами сезонным изменениям амплитуд foF2₁/foF2₂ и hmF2₁. Фаза (местное время максимума) суточной составляющей T_0 (1500 LT) на протяжении года постоянна, что соответствует постоянству фазы hmF2₁. Фаза полусуточной составляющей T_0 смещается на запад от ~ 1400/0200 LT зимой до ~ 0700/1900 LT летом. Близкие к этим сезонные изменения происходят с фазой hmF2.

Рис. 4. Для 4–8 января 2003 г. показаны: а – суточная, б – полусуточная, в – реально наблюдаемая (тонкая линия) вариации foF2; г – е – то же для 24–28 июня. Светлые и темные кружки отмечают местные полдень и полночь, вертикальные линии – максимумы суточной и одной из волн полусуточной составляющих. На панелях в, д нули суммы foF2₁ и foF2₂ совмещены с месячными медианами (6 МГц в январе и 5,6 МГц в июне) низкочастотной составляющей foF2, содержащей после фильтрации возмущения с периодами более 36 часов. Толстой линией на этих панелях показана сумма суточной и полусуточной составляющих foF2

В (Alcayde, 1974) показано, что амплитуда суточной составляющей T_o увеличивается с ростом индекса F10.7. Мы оценили влияние солнечной и геомагнитной активности на суточную и полусуточную составляющие по коэффициенту линейной корреляции (R) между медианными месячными значениями AfoF2_{1,2}/AhmF2_{1,2} и соответствующими медианными

значениями AE и F10.7 индексов. На *рис.* 5 показано, что амплитуда foF2₁ увеличивается с ростом F10.7. Значимая корреляция между значениями AfoF2₁ и F10.7 наблюдается в каждом месяце. Значение R_i максимально в январе и минимально в июле (*i* – номер месяца). В мае–июле коэффициенты корреляции между AfoF2₁ и AE индексом равны или больше указанных для F10.7. Возможно, что летом значения AE индекса модулируются потоком солнечного излучения через ионосферную проводимость эффективнее, чем зимой.

Рис. 5. Зависимости амплитуды суточной составляющей foF2 от индекса солнечной активности, построенные для 12 месяцев 2003–2011 гг. по медианным месячным значениям AfoF2₁ и F10.7. Для каждого месяца показаны линии линейной регрессии (номер месяца указан вблизи верхних точек линий) и приведены значения коэффициента линейной корреляции R_i (i – номер месяца) между значениями AfoF2₁ и F10.7. Для 5–7 месяцев после знака / даны коэффициенты линейной корреляции медианных месячных значений AfoF2₁ и AE индекса

Подобие изменений То и параметров F2 слоя, а также их зависимостей от F10.7 показывает, что обнаруженные нами устойчивые сезонные вариации суточной и полусуточной составляющих foF2 и hmF2 могут возникать из-за соответствующих изменений температуры и, как следствие, химического состава и ветра в термосфере (Rishbeth, 1998; Mendillo et al., 2002). Мы сопоставили сезонные изменения фаз в 2006–2009 гг. с модельными изменениями состава нейтральной атмосферы и термосферного ветра на высотах 120–400 км. Для удобства некоторые характеристики foF2₁ и foF2₂ приведены в *табл. 5*. Были рассмотрены суточные вариации отношения O/N₂ и скорости вертикального дрейфа ионосферной плазмы. Расчеты выполнялись для широты и долготы станции Иркутск при значениях индексов Fa = 75, F10.7 = 77.5, Ap = 4, близких к наблюдавшимся в 2006–2009 гг.

По модели MSISE90 (Hedin, 1991) значения O/N₂ на высотах h = 120–400 км зимой больше, чем летом. Например, 15 января они меняются от 0,26 до 160.4, а 15 июня – от 0,20 до 34,5. Высота перехода от преобладающих молекулярных к атомарным составляющим атмосферы (может соответствовать высоте, где O/N₂ = 1) равна:

15 января — h $\approx 165\,$ км (h_{min} = 160 км в 0600–0700 LT; h_max = 170 км в 1400–1700 LT);

15 марта – h \approx 180 км (h_{min} = 175 км в 0500–0700 LT; h_{max} = 183 км в 1400–1600 LT) ;

15 июня — h ≈ 200 км (h_{min} = 195 км в 0300 — 0700 LT; h_max = 205 км в 1100–1500 LT) ;

15 сентября – h \approx 180 км (h_{min} = 178 км в 0500–0700 LT; h_{max} = 182 км в 1400–1600 LT). Здесь h_{min} и h_{max} – минимальная и максимальная высота перехода. С увеличением светового дня h увеличивается на \sim 35 км, а время появления h_{max} и h_{min} сдвигается на запад на \sim 3 часа. По величине и знаку это соответствует сезонным изменениям фазы foF2₂, а рост высоты перехода – подъему максимума F2 слоя при удлинении светового дня (*табл. 5*).

Вклад ветра в изменение foF2 обычно оценивается по скорости вертикального дрейфа плазмы (W_d , положительна в направлении от Земли) (Rishbeth, 1998). В нашей работе $W_d = (U \cos D - V \sin D) \sin I \cos I$, где I и D – магнитное наклонение и склонение, U – меридиональная и V – зональная компоненты скорости термосферного ветра, рассчитанные по модели HWM07 (Drob et al., 2008). Считается, что при $W_d > 0$ ($W_d < 0$) плазма дрейфует в область меньших (больших) скоростей рекомбинации, что увеличивает (уменьшает) foF2.

Мы сопоставили данные *табл. 5 с* картами W_d , построенными с шагом 10 км по высоте и 15 ° по долготе. Оказалось, что максимум суточной и утренне – полуденный максимум полусуточной вариаций foF2 расположены в сентябре – марте в центре, в апреле/ августе вблизи и в мае – июле на границе области $W_d < 0$. Вечерне-полуночный максимум полусуточной вариации foF2 расположен в области $W_d > 0$. В октябре–январе фаза этой волны близка к местному времени максимальных W_d , в другие месяцы – на 2–6 часов меньше него.

Во всех случаях фазы суточной и утренне-полуденного максимума полусуточной вариации лежат в секторе LT, где различия между W_d на разных высотах минимальны. На *рис. 6* это показано для 15 января и 15 июня. На панели (а) линии W_d (LT), проведенные с шагом 10 км для фиксированных h, пересекаются в ~ 1300 LT, где разброс W_d минимален. Вторая особенность этого сектора – перемена знака $\Delta W_d/\Delta h$ на высотах 150 – 200 км (под максимумом foF2, *maбл. 5*), отчетливо видная на нижней левой панели *рис. 6*.

Месяц		Фаза, LT		hmF2, км					
	T1	T2 ₁	Т22	T1	T2 ₁	T2 ₂			
1	1145–1300	1215-1400	0015–0115	199–220	199–221	272-310			
2	1145-1300	1130–1315	0000-0100	207–223	209–232	277-307			
3	1230–1345	1045-1315	2230-0145	212–232	214–237	271-307			
4	1345-1500	0830-1015	2030-2230	223–244	215-240	274-304			
5	1415-1700	0830–0930	2030–2130	225–253	220–248	272–296			
6	1515-1700	0900-1015	2100-2145	216–249	202–249	257–295			
7	1430–1730	0845–0945	2045–2145	213–251	211–241	269–294			
8	1330–1545	0830–1000	2030–2130	213–242	209–235	267–301			
9	1215–1415	0845-1115	2045-2330	216-232	213–236	273–295			
10	1145–1300	1130–1245	2330-0030	211–227	211–222	270-303			
11	1130–1215	1215–1245	0015-0045	202–215	200–221	272-310			
12	1100-1200	1200–1245	0000-0045	196–217	196–217	273-310			

Таблица 5. Для 2006–2009 гг. приведены минимальная нижняя и максимальная верхняя квартили фазы суточной (T1) и двух волн полусуточных (T2₁, T2₂) вариаций foF2; высоты hmF2, соответствующей этой фазе

Рис. 6. В первом ряду показаны рассчитанные по модели НWM93 для 15 января (a) и 15 июня (б) зависимости скорости вертикального дрейфа на высотах от 120 до 340 км от местного времени, во втором – фрагменты тех же зависимостей в меньшем масштабе. Толстые линии соответствуют hmF2, указанным для T1 и T2₁ в табл. 5, тонкие – меньшим, точечные – большим высотам. Указаны значения высот h £ hmF2. Черные и серые прямоугольники на оси абсцисс отмечают фазы суточной и полусуточной составляющих foF2, серые четырехугольники на линиях $W_d(LT)$ – области, соответствующие фазе вечерне-полуночного максимума полусуточной вариации. В третьем ряду приведены высотные профили W_d в окрестности фаз суточной и полусуточных вариаций foF2. Серыми прямоугольниками показаны высоты, соответствующие эти фазам

Такими же свойствами обладают зависимости W_d (LT) и W_d (h), показанные на панели (б) для июня. Здесь фаза суточной вариации foF2 лежит вблизи 1600 LT. На соответствующей нижней (четвертой) панели *рис.* 6 видно, что при переходе через 1600 LT знак $\Delta W_d/\Delta h$ меняется с отрицательного на положительный на h = 150–200 км, лежащих ниже hmF2. Фаза утренне-полуденного максимума полусуточной вариации (0900–1000 LT) близка к LT, где пересекаются линии W_d (LT), соответствующие h = 160–240 км. На нижней третьей панели *рис.* 6 показано, что в 0900 LT происходит перемена знака $\Delta W_d/\Delta h$ на h = 150–200 км, расположенных, как и в описанных выше случаях, ниже hmF2.

Связь между фазой вечерне-полуночной волны полусуточной вариации и особенностями долготно-высотного распределения W_d менее очевидна. Тем не менее, и в этом случае фазе полусуточной вариации соответствует сектор малого разброса значений W_d в ограниченном диапазоне высот. Для 15 января это h = 160–220 км (вторая слева панель во втором ряду), для 15 июня (правая панель второго ряда) – h ≥ 220 км.

Проведенное нами сопоставление результатов анализа экспериментальных данных и модельных расчётов показывает, что представление вариаций параметров F2 слоя в виде суммы гармоник суточной вариации не является чисто формальным, а отражает пространственную перестройку процессов, происходящих в атмосфере Земли в течение года.

Работа выполнена при поддержке грантов РФФИ № 11-05-00908 и 13-05-91159.

Литература

- 1. Брюнелли Б.Е., Намгаладзе А.А. Физика ионосферы. М.: Наука, 1988. 527 с.
- 2. Ишанов С.А., Медведев В.В., Захаров Л.П. и др. Эффекты возмущения нейтральных ветров // Вестник КГУ. 2005. № 1–2. С. 54–59.
- 3. *Пирог О.М., Полех Н.М., Чистякова Л.В.* Долготные вариации критических частот F2-слоя в высоких широтах // Геомагнетизм и аэрономия. 2000. Т. 40. № 2. С. 107–111.
- 4. *Серебренников М.Г., Первозванский А.А.* Выявление скрытых периодичностей. М.: Наука, 1965. 244 с.
- 5. *Alcayde D*. Diurnal and long-term behavior of the exospheric temperature as observed by incogerent scatter sounding in the F₂ region // Radio Sci. 1974. V. 9. No. 2. P. 239–245.
- Altadill D., Apostolov E.M., Boska J. et al. Planetary and gravity wave signatures in the F-region ionosphere with impact on radio propagation predictions and variability // Ann. Geophys. 2004. V. 47. No. 2/3. P. 1109–1119.
- Drob D.P., Emmert J.T., Crowley G. et al. An empirical model of the Earth's horizontal wind fields: HWM07 // J. Geophys. Res. 2008. V. 113. A12304, doi:10.1029/2008JA013668.
- Forbes J.M. Vertical coupling by the semidiurnal tide in Earth's atmosphere // Climate and Weather of the Sun-Earth System (CAWSES): Selected Papers from the 2007 Kyoto Symposium, Edited by T. Tsuda, R. Fujii, K. Shibata, and M. A. Geller. TERRAPUB, Tokyo. 2009. P. 337–348.
- 9. Goodmam J. Space Weather & Telecommunications. Springer. 2005. 382 p.
- 10. *Hedin A. E.* Neutral Atmosphere Empirical Model from the surface to lower exosphere MSISE90 // J. Geophys. Res. 1991. V. 96. P. 1159–1172.

- Mendillo M., Rishbeth H., Roble R.G., Wroten J. Modelling F2-layer seasonal trends and dayto-day variability driven by coupling with the lower atmosphere // J. Atmosph. Solar-Terr. Phys. 2002. V. 64. P. 1911–1931.
- 12. *Pirog O.M., Polekh N.M., Romanova E.B. et al.* The main ionospheric trough in the East Asian region: Observation and modeling // J.Atmosph. Solar-Terr. Phys. 2009. V. 71. No. 1. P. 49–60.
- 13. *Pirog O.M., Polekh N.M., Romanova E.B. et al.* F2 layer response to geomagnetic disturbances in Eastern Asia under the low solar activity // Adv. Space Res. 2010. V. 46. No. 7. P. 921–933.
- 14. *Rishbeth H*. How the thermospheric circulation affects the ionospheric F2-layer // J. Atmosph. Solar-Terr. Phys. 1998. V. 60. P. 1385–1402.
- 15. *Romanova E.B., Tashchilin A.V., Zherebtsov G.A. et al.* Modeling of the seasonal effects of geomagnetic storms in the Eastern Asia ionosphere // International Journal of Geomagnetism and Aeronomy. 2006. V. 6. N G13003. –P.doi:10.1029/2005GI000119.
- 16. Romanova E.B., Pirog O.M., Polekh N.M. et al. Modeling of ionospheric parameter variations in East Asia during the moderate geomagnetic disturbances // Adv. Space Res. 2008. V. 41. No 8. P. 569–578.
- 17. Salah J.E., Holt J.M. Midlatitude thermospheric winds from incoherent scatter radar and theory // Radio Sci. 1974. V. 9. No. 2. P. 301–313.
- 18. *Tamer Ataç, Atila Özgüç, Rıza Pektaş.* The variability of foF2 in different phases of solar cycle 23 // J. Atmosph. Solar-Terr. Phys. 2009. V. 71. No. 5. P. 583–588.
- 19. Zolotukhina N., Polekh N., Pirog O. Variability of the ionosphere over Irkutsk at low solar activity // Advances in Space Research. 2011. V. 48. No. 10. P. 1606–1612.

Seasonal variability of the diurnal and semi-diurnal F2 layer components over lrkutsk, according to ionospheric radio sounding data

N. Zolotukhina, N. Polekh, E. Romanova, A. Polyakova

Institute of Solar-Terrestrial Physics of Siberian Branch of Russian Academy of Sciences, Irkutsk, Russia E-mail: zolot@iszf.irk.ru

The fluctuations of the critical frequency (foF2) and peak height (hmF2) of the F2 layer over Irkutsk (52.5° N, 104.0° E) in 2003–2011 are studied. The fluctuations contain components with periods $T \approx 24/n$ hours (n = 1–7). Amplitudes of the foF2 and hmF2 diurnal components vary gradually from winter maximum to summer minimum. Amplitudes of the foF2 semidiurnal component vary abruptly, thus forming a narrow winter peak in November – January. The phase of the diurnal foF2 component increases gradually by 4–6 hours from winter to summer. The phase of the semidiurnal foF2 component is nearly stable in winter/summer and decreases (increases) sharply by 2–3 hours near the spring (fall) equinox. The phase of the hmF2 diurnal component varies slightly between 1130 and 1300 LT; that of the semidiurnal one decreases (increases) by 4–6 hours in February (October).

Keywords: parameters of the ionospheric F2 layer, seasonal variations, diurnal and semidiurnal components.