Дистанционное определение температуры подстилающей поверхности, приземной температуры воздуха и эффективной температуры по спутниковым данным для юга Европейской территории России

Е.В. Волкова, С.А. Успенский

НИЦ космической гидрометеорологии «Планета» Москва, 123242, Россия E-mails: quantocosa@bk.ru, uspenskys@planet.iitp.ru

На основе Комплексной Пороговой Методики (КПМ) (Волкова, 2013; Волкова, Успенский, 2010), позволяющей детектировать облачность и определять её параметры автоматически в круглосуточном режиме по данным радиометров AVHRR/NOAA и SEVIRI/Meteosat-10 для Европейской территории России, разработан достаточно простой с вычислительной точки зрения алгоритм расчёта значений температуры приземного воздуха (Ta), эффективной радиационной температуры подстилающей поверхности (Te) и температуры подстилающей поверхности (Ts) по данным спутниковых измерений радиационной температуры в ИК-каналах (λ =11 и 12 мкм) радиометров AVHRR/NOAA и SEVIRI/Meteosat-10 для безоблачных пикселов. Предложено два варианта методики. В «климатическом» варианте коэффициенты-константы для предикторов T₁₁, (T₁₁-T₁₂) и (T₁₁-T₁₂)² рассчитываются для каждого месяца и года по методу наименьших квадратов при использовании данных наземных измерений Та и Ts на метеостанциях для информации AVHRR/NOAA отдельно для светлого и тёмного времени суток, а для информации SEVIRI/Meteosat-10 - отдельно для каждого срока спутникового наблюдения по той же самой выборке. Основным недостатком использования этого метода является необходимость наличия синхронного архива спутниковых данных и наземных метеонаблюдений за Та и Тѕ и необходимость ожидания конца периода времени (обычно 1 месяц), для которого выполняются спутниковые оценки. «Оперативный» вариант использует «динамические» коэффициенты, зависящие с помощью эмпирических формул от высоты солнца (h) и номера календарного дня от начала года (dat). При этом точность оценок несколько падает по сравнению с «климатическим» вариантом. Наибольшие ошибки отмечаются в конце зимы - начале весны при наличии снежного покрова и оттепели или ночью зимой при сильном выхолаживании (спутниковые оценки существенно выше наземных измерений), а также летом во второй половине дня по местному времени (из-за дневного перегрева поверхности земли спутниковые оценки ниже наземных). Аппаратура на отечественных спутниках серии Метеор (сканер MCУ-MP) и Электро (сканер MCУ-ГС) аналогична соответственно радиометрам AVHRR и SEVIRI. Поэтому рассматриваемые в работе методы спутниковых оценок Та, Те и Тs для информации AVHRR и SEVIRI могут быть легко перенесены на данные МСУ-МР и МСУ-ГС.

Ключевые слова: SEVIRI, Meteosat-10, AVHRR, NOAA, приземная температура воздуха, эффективная температура, температура подстилающей поверхности

Одобрена к печати: 27.07.2016 DOI: 10.21046/2070-7401-2016-13-5-291-303

Введение

Сеть агрометеорологических станций, на которой ведутся регулярные наблюдения за температурой поверхности почвы, достаточно редка. В то же время для целого ряда климатических, агрометеорологических, гидрологических и других задач мониторинга и моделирования различных ситуаций, таких как засухи, наводнения и пожары (Музылев и др., 2013), необходим регулярный мониторинг температуры приземного воздуха (Та), эффективной радиационной температуры подстилающей поверхности (Те) и температуры подстилающей поверхности (Тs) с достаточным пространственным и временным разрешением. Спутниковые данные в таких случаях – единственное средство получения долгосрочных и крупномасштабных данных о температуре.

Значения Ts и Ta обычно рассчитывают для безоблачных условий по данным радиационной температуры в диапазоне 10,5–11,5 мкм и/или 11,5–12,5 мкм (например, каналы 4 и 5 радиометра AVHRR (Advanced Very High Resolution Radiometer) полярно-орбитального метеоспутника серии NOAA или каналы 9 и 10 радиометра SEVIRI (Spinning Enhanced Visible and InfraRed Imager) геостационарного метеоспутника Meteosat-10). Вследствие неоднородности поверхности Земли спутниковые измерения обычно соответствуют смешанным пикселам, в которых присутствуют разные типы поверхности. Получаемые спутниковые оценки Та, Те и Тs часто отличаются от измеренных на метеостанциях, т.к. являются средними для всего пиксела спутникового изображения, т.е. их пространственный масштаб во много раз больше, чем у наземных.

В настоящее время разработано много разных методов и методик определения значений Тs по спутниковым данным (LSA SAF, 2010). Некоторые из них используют, например, зависимость Ts от излучательной способности поверхности е (Соловьев, Успенский, 2009). Однако их точность сильно зависит от адекватности задания е (моделирования или оценки по спутниковым данным). Другие методы используют рассчитанный по спутниковым данным индекс вегетации NDVI (Normalized Difference Vegetation Index), только радиационную температуру и др. Так, в рамках проекта LSA (Land Surface Analysis) SAF (Satellite Application Facility) EUMETSAT (http://www.eumetsat.int) осуществляется непрерывный мониторинг Ts при использовании достаточно простой эмпирической формулы (Lavanant, 2002) для двух ИК-каналов. Приемлемой точностью восстановления значений Ts считается 2 K, оптимальной – 1 K (LSA SAF, 2010).

Получение оценок Та и Те является более сложной задачей, чем Тs, т.к. на них влияют не только радиационная температура подстилающей поверхности, но и другие параметры (Соловьев, Успенский, 2009). Существуют два принципиально разных подхода к их оценкам – параметризация через Ts или расчёт независимым способом аналогично Ts (Sun et al., 2005).

В данной работе рассмотрено два варианта определения значений Та, Те и Тs, в т.ч. проведено сопоставление с методикой MAIA (Lavanant, 2002). Проанализированы достоинства и недостатки каждого метода и оценена работоспособность при сопоставлении с наземными оценками Ta, Te и Ts на метеостанциях для юга Европейской территории России (ЕТР). Рассматриваемый регион лесостепной и относительно однородный в пределах пиксела спутникового изображения. Для этого региона построена модель для расчёта водного баланса территории, в которой используются рассчитанные авторами по спутниковым данным значения Ta, Te и Ts (Музылёв и др., 2013).

Аппаратура на отечественных спутниках серии Метеор-М (сканер МСУ-МР) и Электро (сканер МСУ-ГС) аналогична по характеристикам радиометрам AVHRR/NOAA и SEVIRI/Meteosat-10. Поэтому рассматриваемые в работе методы спутниковых оценок Та, Те и Тs для информации AVHRR и SEVIRI могут быть в дальнейшем перенесены на данные МСУ-МР и МСУ-ГС для той же территории.

Исходные данные и описание методики

При расчёте значений Та, Те и Тѕ безоблачные пикселы отделяются от облачных с помощью Комплексной пороговой методики – КПМ (Волкова, Успенский, 2010; Волкова, 2013), разработанной для двух видов спутниковых данных: AVHRR/NOAA и SEVIRI/ Meteosat. Точность КПМ по выделению облачной маски рассмотрена в работе (Волкова, Успенский, 2015) и вполне удовлетворяет требованиям ВМО.

Для настройки и валидации методики использовались значения Та и Тs, полученные в результате измерений на 48 метеостанциях, расположенных на юге ЕТР (территория 49°–54° с.ш. и 31°–43° в.д., выборка 2010–2014 гг., сроки наземных наблюдений 0, 3, 6, 9, 12, 15, 18 и 21 ч ВСВ). Значения Те рассчитывались: в светлое время суток – Te=Ta·b+(1-b)·Ts, в тёмное время – Te=(Ta+Ts):2, где b=2·(NDVI-0,1), NDVI=(A_{08} - A_{06}): (A_{06} + A_{08}), A_{06} и A_{08} – спутниковые измерения альбедо в каналах 1 и 2 (λ =0,6 и 0,8 мкм).

Спутниковые данные для каждой метеостанции были доступны: по информации SEVIRI с Meteosat-9 и Meteosat-10 – в среднем 8 наблюдений в сутки (через 3 ч); по информации AVHRR с NOAA-18 и NOAA-19 – от 2 до 8 (обычно 2–4) наблюдений в сутки в период с 22 ч до 15 ч ВСВ. При сопоставлении спутниковых и наземных оценок Та, Те и Тѕ рассматривались фрагменты изображения размером 3х3 пиксела для информации AVHRR (размеры пиксела 1' по широте и 1,5' по долготе (~1–2 км), оценки температуры средние для фрагмента) и 1х1 пиксел для информации SEVIRI (линейные размеры пиксела ~6–8 км) с центром в районе метеостанции.

Восстановление значений Та и Тs по спутниковым ИК-измерениям происходило по методу GSW (Generalised Split-Window) (LSA SAF..., 2010), который заключается в следующем. Чтобы оценить Та и Тs по спутниковым измерениям Т₁₁, необходимо учесть влияние таких параметров, как собственное излучение подстилающей поверхности (зависит от типа поверхности, степени её увлажнения, температуры и др.), а также поглощение и встречное излучение атмосферы (зависит от вертикального распределения температуры, влажности, содержания аэрозоля и др.). Косвенно влияние этих параметров можно оценить через предиктор (Т11-Т12), который описывает комплексное влияние атмосферы и подстилающей поверхности (разное поглощение-излучение атмосферой и подстилающей поверхностью длинноволновой радиации в соседних ИК-каналах в зависимости от степени увлажнения, температуры и др. условий). Этот метод был предложен Wan и Dozier в 1996 г. (LSA SAF..., 2010). В полной версии метода для расчёта значений Та и Тs помимо (T₁₁-T₁₂) используются также сведения о спектральных свойствах подстилающей поверхности в виде коэффициентов излучения, индексов вегетации и т.п. Однако в случае с достаточно однородными условиями (тип подстилающей поверхности, в т.ч. рельеф и растительность, температурный и влажностный режим и др.) спектральные характеристики можно условно считать константами для рассматриваемой территории и описывать в виде комплексных коэффициентов. Этот метод на протяжении многих лет достаточно успешно используется в методике MAIA (Lavanant, 2002).

Так как территория рассматриваемого региона (юг ЕТР) достаточно однородна по типу рельефа и растительности, а также температурно-влажностному режиму, решено было воспользоваться описанным выше методом, т.е. в качестве предикторов использовать значения T₁₁ и (T₁₁-T₁₂), а коэффициенты, учитывающие влияние атмосферы и подстилающей поверхности, подбирать эмпирически. Для небольших периодов времени (до месяца), на протяжении которых температурно-влажностные и вегетационные условия для рассматриваемой территории можно считать условно неизменными, коэффициенты задавались в виде констант. Для больших периодов времени (несколько месяцев) использовалось несколько констант в разные подпериоды времени или коэффициенты описывались формулами, учитывающими их изменение во времени. В результате, спутниковые оценки Ta и Ts рассчитывались по формулам:

$$T = a_1 \cdot T_{11} + a_2 \cdot (T_{11} - T_{12}) + a_3 \cdot (T_{11} - T_{12})^2 + a_4, \qquad (1)$$

$$T = a_5 \cdot T_{11} + a_6 \cdot (T_{11} - T_{12}) + a_7, \qquad (2)$$

где a₁, a₂, a₃, a₄, a₅, a₆ и a₇ – эмпирические коэффициенты (разные для Ta и Ts), T – Ta или Ts.

В методике MAIA используется формула (1) для расчёта значений Ts с коэффициентами-константами $a_1=1,0, a_2=1,31, a_3=0,27, a_4=1,16$ (Lavanant, 2002) для любой суши, кроме пустынь.

При валидации спутниковых оценок Ta, Te и Ts результатами наземных наблюдений рассчитывались: $dev=T_{Ha3em}$ - T_{cnyt} – среднее отклонение спутниковой оценки от наземной; СКО – среднее квадратичное отклонение спутниковой оценки от наземной; stdev= $\sqrt{(\Sigma CKO^2 - \Sigma dev^2)}$ – стандартное отклонение.

Определение Та, Те, Тs по информации AVHRR/NOAA

При использовании коэффициентов-констант a_1 , a_2 , a_3 и a_4 , рассчитанных по методу наименьших квадратов для каждого месяца каждого года отдельно для светлого и тёмного времени суток по той же самой выборке, для которой определялись значения Ta, Te и Ts, значения dev, CKO и stdev получались минимальными: |dev|~0 K, CKO≈stdev.

Исследования показывают (см. *рис.* 1), что среднемесячные $CKO_{Ta} \approx CKO_{Te} = 2-4$ K, $CKO_{Ts} = 2-5$ K, хотя для отдельных сроков спутниковых наблюдений и метеостанций значения dev для Ta, Te и Ts днём могут достигать 10 K, ночью летом – до 5 K, а зимой – до 15 K (для Ts до 20 K)). При этом летом в светлое время суток среднемесячные $CKO_{Ta} \leq CKO_{Te} \leq CKO_{Ts}$: $CKO_{Ta} = 2,7-3,0$ K, $CKO_{Te} = 3,5-3,7$ K, $CKO_{Ts} \approx 5$ K. Ночью летом среднемесячные $CKO_{Ta} \approx CKO_{Ta} \approx CKO_{Te} \approx CKO_{Ts} \approx 2,3-2,6$ K ($CKO_{Te} \leq CKO_{Ts}$). Зимой днём $CKO_{Ta} \approx CKO_{Te} \approx 2,0-5,5$ K, а ночью $CKO_{Ta} \approx CKO_{Te} \approx 2,0-4,5$ K. В целом за год днём $CKO_{Ta} \approx CKO_{Te} = 2,7-2,8$ K, $CKO_{Te} = 3,0-3,1$ K.

Среднемесячные значения СКО_{та} для дневных и ночных условий мало меняются на протяжении года: слабый рост в обоих случаях отмечается в холодный период года,

а минимум приходится на середину вегетационного периода. Среднемесячные значения СКО_{те} растут ночью зимой и днём летом, а соответственно минимумы наблюдаются ночью летом и днём зимой (последний выражен менее заметно). Амплитуда годового хода среднемесячных значений СКО_{та} и СКО_{те} не превышает 2 К. У среднемесячных значений СКО_{та}, а годовая и суточная амплитуда – до 3 К (см. *puc. 1*).

Использование для расчёта значений Ts формулы (1) с коэффициентами из MAIA показывает (см. *рис.* 1), что спутниковые оценки Ts практически всегда ниже измеренных: ночью всегда и зимой днём на 1–2 K, а днём летом среднемесячные $|\text{dev}_{\text{Ts}}|$ могут достигать 8 K (для отдельных спутниковых сроков наблюдения и метеостанций до 20 K, а летом днём – до 25 K). Среднемесячные stdev_{Ts}=2–5 K, CKO_{Ts}=2–9 K (днём максимальны летом и минимальны зимой, а ночью – наоборот). В целом за год днём CKO_{Ts}=5,9–6,7 K (зимой – 2,6–7,2 K, летом – 7,0–8,3 K), а ночью CKO_{Ts}=3,2–3,5 K (зимой – 4–7 K, летом – 2,7–2,9 K). Таким образом, вариант расчёта значений Ts по формуле (1) с коэффициентами из MAIA оказывает-ся заметно хуже, чем при использовании коэффициентов-констант, рассчитанных по той же самой месячной выборке.

В ходе исследований для формулы (2) были подобраны эмпирические функции («динамические» коэффициенты), описывающие поведение коэффициентов a₅, a₆ и a₇ круглосуточно и круглогодично в зависимости от параметров h₆ и dat:

 $Ta=T11\cdot(1+datd\cdot0.01)+(T11-T12)\cdot datd+(1-datd)\cdot(1-hsol)\cdot7-7\cdot hsol,$ Ts=T11·(1+(datd+2·shda):100)+(T11-T12)·(datd+2·shda)+(1-datd)·3·(1-hsol), shda=hsol·datd, datd=0,1+(183-|183-(dat-10)|):180, hsol=h_ при h_>0° и hsol=0°- при h_<0°.

Из *рис.* 1 видно, что результаты оценок Тѕ при использовании «динамических» коэффициентов получаются хуже, чем при использовании коэффициентов-констант, рассчитанных для каждого месяца и года, но заметно лучше, чем при использовании коэффициентов из МАІА. Значения dev колеблются около 0 К, но с большей амплитудой (среднемесячные |dev|≤2 К, для отдельных спутниковых сроков наблюдения и метеостанций до 20 К), чем при использовании коэффициентов-констант.

Днём летом высокие значения dev (до 30 K) наблюдаются при аномально высоких значениях Ts_{наземн.} на фоне соседних метеостанций (отличие от фона 15–25 K). Иногда днём летом спутниковые оценки Ts могут оказаться на 10–15 K выше наземных: если значения Ts_{спутн.} аномально высокие на фоне окрестностей по спутниковым данным (это связано с методикой измерения Ts на метеостанции, преобладающим типом почвы, а также с эффектом локального «перегрева» в пределах пиксела спутникового наблюдения); если значения Ts_{наземн.} отличны от фона соседних станций на 10–15 K в сторону похолодания (возможно, на метеостанцию попала тень от облака).

Значения dev<-10 К могут наблюдаться в ночное время в холодный период года, в т.ч. весной и осенью, и связаны с оттепелью или сильным приземным выхолаживанием. В этом случае Ts_{спутн} выше Ts_{наземн}, которые близки к 0°С или очень низки (-20°С и ниже). Днём зимой при наличии снежного покрова в оттепель также могут отмечаться dev<-10 К. В этом случае при неизменной $Ts_{_{Ha3eMH}}=0^{\circ}C$ (снег не может иметь температуру выше 0°C) спутниковые измерения T_{11} и T_{12} дают достаточно высокие положительные значения (10°C и более), т.к. прогреваются попадающие в поле зрения спутниковой аппаратуры свободные от снега поверхности.

Рис. 1. Годовой ход среднемесячных значений dev и СКО (К) отдельно для светлого и тёмного времени суток, полученных при сопоставлении спутниковых (по данным радиометра AVHRR/NOAA) оценок Ta, Te и Ts с результатами наземных наблюдений. Значения Ta, Te и Ts получены по формуле (1) с эмпирическими коэффициентами-константами (рассчитаны по той же самой выборке для каждого месяца и года отдельно для дня и ночи) и коэффициентами из методики MAIA, а также по формуле (2) с «динамическими» коэффициентами (зависят от календарного дня и высоты солнца)

В целом же за год значения dev_{тs} колеблются около 0 К (среднегодовые $|dev_{Ts}| \le 0,7$ К днём и $|dev_{Ts}| \le 0,4$ К – ночью). Среднегодовые СКО_{тs}=4,9-5,6 К днём, и СКО_{тs}~3,4 К ночью. Среднемесячные значения СКО_{тs} (см. *рис. 1*) при использовании «динамических» коэффициентов днём существенно меньше, чем при использовании коэффициентов из МАІА, но выше, чем при использовании коэффициентов-констант для каждого месяца и года. Они достигают максимума летом (4–5 К) и минимума – зимой (2–3 К). Ночью значения СКО_{тs} при использовании «динамических» коэффициентов почти не отличаются от варианта с коэффициентами из МАІА и лишь немного хуже, чем при использовании коэффициентов-констант. Максимум СКО_{тs} ночью, наоборот, приходится на лето (4–6 К), а минимум – на зиму (2–3 К); stdev_{тs}≈СКО_{тs} и испытывают такой же годовой ход.

Значения Та и Те по спутниковым данным с помощью «динамических» коэффициентов восстанавливаются менее надёжно, чем значения Ts. Среднемесячные $|\text{dev}_{Ta}| \leq 3$ K, $|\text{dev}_{Te}| \leq 3,5$ (см. *рис.* 1). При этом ночью среднемесячные значения dev_{Ta} и dev_{Te} ближе к 0 K, чем в дневное. Наибольшие ошибки оценок Та и Те приходятся на январь–апрель (среднемесячные $|\text{dev}| \leq 8-9$ K, для отдельных станций и спутниковых сроков наблюдения до 20–30 K) и связаны с проблемой таяния снега и др. (см. выше объяснение для Ts). Среднегодовые $|\text{dev}_{Ta}| \leq 0,6$ K днём и $|\text{dev}_{Ta}| \leq 0,2$ K ночью, $|\text{dev}_{Te}| \leq 0,8$ K.

Значения СКО_{та} и СКО_{те} для варианта с «динамическими» коэффициентами выше, чем для варианта с коэффициентами-константами. Среднемесячные СКО_{та}=2-4 К (максимумы отмечаются весной и летом днём, а зимой – ночью (в среднем 4–5 и до 11 К); минимумы – осенью (~2 К). Среднемесячные СКО_{те}=2-6 К (максимумы в дневное время весной и летом, а ночью – зимой и весной (5–11 К); минимумы – в дневное время осенью, а в ночное – летом (~2 К). Годовой ход среднемесячных значений stdev_{та} и stdev_{те} более ровный (меньше годовая амплитуда) ночью. Среднегодовые СКО_{та}=3,5– 4,6 К днём (для разных лет), ночью СКО_{та}=3,0–3,2 К ночью (летом обычно ниже, чем зимой).

Таким образом, формула (1) с коэффициентами-константами для каждого месяца и года, рассчитанными по той же самой выборке, отличается наибольшей работоспособностью по сравнению с наземными измерениями Та, Те и Тs. В целом не намного хуже получаются оценки Та, Те и Ts по формуле (1) с «динамическими» коэффициентами. Использование формулы (2) с коэффициентами из MAIA относительно неплохо оценивает Ts в ночное время летом и днём зимой, хронически занижая оценки Ts в среднем на 1-2 K по сравнению с наземными измерениями. Ночью зимой занижение увеличивается до 2-5 K. И совсем не пригоден для оценок Ts для ETP в дневное время летом – среднее занижение оценок Ts достигает 4–8 K. Точность же варианта расчёта Ta, Te и Ts с использованием коэффициентов-констант не сильно меняется в течение года: она несколько падает для Ta зимой и весной, для Te и Ts – днём летом и ночью зимой.

Использование «динамических» коэффициентов позволяет не зависеть от данных наземных измерений Та, Те и Тs, необходимых для расчёта коэффициентов-констант.

Однако точность оценок может заметно упасть в ночное время зимой и днём зимой-весной для Ta, а днём весной-летом и ночью зимой – для Te и Ts.

Определение Та, Те, Тs по информации SEVIRI/Meteosat

Для данных SEVIRI/Meteosat коэффициенты-константы a_1 , a_2 , a_3 и a_4 из формулы (1) рассчитывались по методу наименьших квадратов для каждого месяца каждого года отдельно для каждого срока спутникового наблюдения по той же самой выборке, для которой рассчитывались значения Ta, Te и Ts.

Исследования показывают, что в среднем за год среднемесячные и среднесуточные dev~0 K для Ta, Te и Ts. Среднемесячные $CKO_{Ta}=1,5-5$ K, минимум отмечается утром (3 ч и 6 ч BCB) и вечером (15 ч BCB), при этом ночной максимум обычно больше дневного. Влияние сезона неоднозначно, хотя в разгар лета значения CKO_{Ta} обычно несколько ниже. В среднем за год $CKO_{Ta}\approx 2$ K.

Среднемесячные СКО_{тs}=2–6 К, максимум приходится на день (9 ч и 12 ч ВСВ), минимум – на утро (3 ч ВСВ). В дневное время значения СКО_{тs} обычно на 0,6–0,7 К выше, чем ночью. Весной значения СКО_{тs} часто несколько выше, чем в другие сезоны. Летом максимум приходится на дневные часы, зимой – на ночные. В среднем за год СКО_{тs}≈3 К.

Годовой ход СКО_{те} ближе к СКО_{та}, чем к СКО_{тs} (см. *рис.* 2): в среднем за год СКО_{те} \leq 2,5 К.

Использование формулы (1) с коэффициентами из МАІА показывает (см. *рис.* 2), что спутниковые оценки Ts зимой и летом ночью оказываются практически всегда выше измеренных (dev_{Ts}= -1 K – -5 K). Летом в дневное время, наоборот, они ниже (dev_{Ts}=2–10 K). Зимой CKO_{Ts}=3–7 K, летом увеличивается до 11 K (максимум отмечается днём (9 ч и 12 ч BCB). В среднем за год dev_{Ts}<0 K (-0,5 K – -1 K и ниже), CKO_{Ts}≈5 K. В среднем за вегетационный период $|dev_{Ts}| \le 0,5-1$ K, вне его – $dev_{Ts} < -2,5$ K. Летом CKO_{Ts} немного больше, чем зимой. В светлое время суток $dev_{Ts} \approx 0$ K или больше, в тёмное – $dev_{Ts} < 0$ K. Днём CKO_{Ts} обычно немного больше, чем ночью.

Таким образом, при сопоставлении с результатами наземных измерений на метеостанциях использование формулы (1) с коэффициентами из MAIA даёт оценки Ts существенно хуже по сравнению с коэффициентами-константами для каждого срока, месяца и года, рассчитанными по той же самой выборке.

В ходе исследований были подобраны эмпирические функции для «динамических» коэффициентов:

 $Ta=T_{11}+(T_{11}-T_{12})\cdot(datd-hsol)-0,5,$ $Ts=T_{11}+(T_{11}-T_{12})\cdot1,5+(T_{11}-T_{12})^{2}\cdot shda+shda\cdot5-(1-hsol).$

Анализ *рис.* 2 и 3 показывает, что использование «динамических» коэффициентов лучше восстанавливает значения Ts (по сравнению с наземными наблюдениями), чем ис-

пользование коэффициентов из МАІА, но хуже, чем коэффициентов-констант для каждого срока наблюдения, месяца и года. Так, зимой dev_{Ts}=-1 K – -5 K (в зависимости от срока наблюдения и месяца), т.е. спутниковые оценки Ts выше наземных. Возможно, это частично связано с тем, что элемент разрешения спутниковой информации составляет 30–60 км² и в него помимо снега попадают более тёплые здания, шоссе, деревья и др. Летом днём, наоборот, спутниковые оценки Ts оказываются ниже измеренных (dev_{Ts}=1–4 K) из-за существенного локального перегрева поверхности почвы в месте измерения на метеостанции, в то время как спутниковая оценка включает в себя и более холодные поверхности (например, водоёмы). Значения СКО_{Ts} при использовании «динамических» коэффициентов больше, чем при использовании коэффициентов-констант, но меньше, особенно летом, чем при использовании коэффициентов из MAIA. В среднем для разных месяцев и сроков СКО_{Ts}=2–7 K.

В годовом ходе (средние за месяц по всем срокам наблюдения) значения dev_{Ts} имеют зимний минимум (до -3 K) и максимум в начале лета (0–1 K); в среднем за период вегетации dev_{Ts} \approx 0 K или выше, в то время как вне его среднемесячные dev_{Ts}<0 K (до -1 K в начале зимы и до -2 K в конце). Значения СКО_{Ts} имеют растянутый максимум с зимы до середины лета и минимум осенью, в среднем за год СКО_{Ts}=3,7–4,0 K. В целом летом спутниковые оценки Ts ниже наземных измерений, а в конце зимы и весной – наоборот, выше; осенью Ts восстанавливается наиболее точно по спутниковым данным (см. *рис. 2*).

В суточном ходе значения dev_{Ts} (средние за год для каждого срока наблюдения) имеют минимум в 3 ч ВСВ (-2 К – -3 К), второй менее глубокий минимум приходится на 9–12 ч ВСВ (около -2 К), а максимум наблюдается в 15 ч ВСВ (1–2 К) (при максимальных суточных Ts). Максимум СКО_{Ts}=4–5 К приходится на 9–12 ч ВСВ, а минимум СКО_{Ts}≈3 К на 18 ч ВСВ. В целом днём значения dev_{Ts} меньше, чем ночью, а СКО_{Ts}, наоборот, больше. Таким образом, спутниковые оценки Ts в разгар дня (9–12 ч ВСВ) оказываются в среднем ниже наземных измерений, а утром (3 ч ВСВ) – обычно выше (см. *рис. 3*).

Спутниковые оценки Та сильнее отличаются от измеренных на метеостанциях летом в 15–18 ч ВСВ (часто ниже измеренных) и зимой в 21–0 ч ВСВ (обычно выше измеренных). Для разных месяцев и сроков dev_{Ta}=4 K – -6 K, CKO_{Ta}=2–7 K. Минимум CKO_{Ta} обычно приходится на 3 ч ВСВ, а зимой и на 15–18 ч ВСВ. Днём среднее dev_{Ta} ниже, а среднее CKO_{Ta} выше, чем ночью. В среднем за год dev_{Ta}=-0,5 K, CKO_{Ta}=3–3,5 K, минимум dev_{Ta} наблюдается в 3 ч ВСВ, максимум – в 15 ч ВСВ, минимум CKO_{Ta} в 18 ч ВСВ, максимум – в 9–12 ч ВСВ. В течение года минимум dev_{Ta} приходится на конец зимы – начало весны (спутниковые оценки превышают измеренные на 1–2 K), максимум – на разгар лета (спутниковые оценки ниже измеренных на 0,5–1 K). Годовой ход CKO_{Ta} выражен плохо. Таким образом, летом и днём спутниковые оценки Та в среднем ниже измеренных, а зимой и ночью – выше (см. *рис. 2 и 3*).

Оценки Те по спутниковым данным при использовании «динамических» коэффициентов оказываются хуже по сравнению с наземными измерениями, чем при использовании коэффициентов-констант. Минимум значений dev_{те} (спутниковые оценки выше наземных измерений на 1–2 К) приходится на конец зимы – начало весны, а максимум (спутниковые оценки ниже наземных на 0,5–1 К) – на лето – осень, в среднем за год dev_{те} \approx 0 К.

Рис. 2. Годовой ход среднемесячных (по всем срокам в течение суток) значений dev и СКО (К), полученных при сопоставлении спутниковых (по данным радиометра SEVIRI/Meteosat-10) оценок Та, Те и Тs с результатами наземных наблюдений. Значения Та, Te и Ts получены по формуле (1) с эмпирическими коэффициентами-константами (рассчитаны по той же самой выборке для каждого месяца и года отдельно для дня и ночи) и коэффициентами из методики MAIA, а также по формулам (1) и (2) с «динамическими» коэффициентами (зависят от календарного дня и высоты солнца)

Рис. 3. Суточный ход среднегодовых значений dev и СКО (К), полученных при сопоставлении спутниковых (по данным радиометра SEVIRI/Meteosat-10) оценок Та, Те и Тs с результатами наземных наблюдений. Значения Та, Te и Ts получены по формуле (1) с эмпирическими коэффициентами-константами (рассчитаны по той же самой выборке для каждого месяца и года отдельно для дня и ночи) и коэффициентами из методики MAIA, а также по формулам (1) и (2) с «динамическими» коэффициентами (зависят от календарного дня и высоты солнца)

Максимум СКО_{те}≈4 К приходится на весну, в остальное время года СКО_{те}=2-3 К (в среднем за год СКО_{те}≈3 К). В суточном ходе минимум dev_{те} приходится на 3–12 ч ВСВ (спутниковые оценки выше наземных на 2–3 К), а максимум (спутниковые оценки ниже наземных на ~1 К) – на 15–18 ч ВСВ. В светлое время суток значения dev_{те} ниже, а СКО_{те} – выше, чем в ночное (см. *рис. 2* и *3*).

Таким образом, формула (1) с коэффициентами-константами для каждого срока, месяца и года, рассчитанными по той же самой выборке, отличается наибольшей работоспособностью. В целом, не сильно уступают им оценки Та, Те и Тs, полученные при использовании «динамических» коэффициентов. Оценки с коэффициентами из MAIA дают намного больше ошибок. Применение «динамических» коэффициентов позволяет не зависеть от данных наземных измерений Ta, Te и Ts.

Заключение

Было проведено сравнение нескольких способов получения оценок Та, Те и Тя по спутниковым (AVHRR/NOAA и SEVIRI/Meteosat-10) данным. Наилучшим авторами признан вариант, использующий предикторы T11, (T11-T12) и (T11-T12)², с коэффициентами-константами (рассчитанные по методу наименьших квадратов для той же самой выборки, по которой оцениваются значения температуры) для каждого месяца и года: для информации AVHRR/NOAA отдельно для светлого и тёмного времени суток, а для информации SEVIRI/Meteosat-10 – отдельно для каждого срока спутникового наблюдения. Эта методика достаточно хорошо работает круглосуточно и круглогодично для юга ЕТР. Значения dev≈0 K, а значения CKO минимальны при сопоставлении с данными наземных измерений на метеостанциях (в зависимости от времени суток и сезона: для информации AVHRR/NOAA – СКО_{та}=2,6–3,1 К, СКО_{те}=2,7–3,5 К, СКО_{тs}=3,0–4,4 К; для информации SEVIRI/Meteosat-10 – СКО_{та}=1,9–2,4 К, СКО_{те}=2,2–2,8 К, СКО_{тs}=2,6–3,6). Основным недостатком использования этого метода является необходимость наличия синхронного архива спутниковых и наземных наблюдений за Та, Те и Тѕ и ожидания окончания периода времени (обычно размером 1 месяц), чтобы рассчитать коэффициенты, поэтому он подходит для климатических оценок температуры и непригоден для оперативного мониторинга.

Для оперативных расчётов рекомендуется использовать вариант с «динамическими» коэффициентами, зависящими с помощью эмпирических формул от h_o и dat. При этом точность оценок несколько падает: для информации AVHRR/NOAA среднегодовые $|dev| \le 0,7$ K, среднемесячные $|dev| \le 4$ K, для отдельных станций и сроков |dev| - до 20-25 K, среднемесячные $CKO_{Ta} \approx CKO_{Te} = 3,0-4,6$ K, $CKO_{Ts} = 3,3-5,6$ K; для информации SEVIRI/ Meteosat-10 среднегодовые $|dev| \le 1$ K, среднемесячные $|dev| \le 2,5$ K, для отдельных станций и сроков |dev| до 20–25 K, среднемесячные $CKO_{Ta} \approx 20-25$ K, среднемесячные $CKO_{Ta} \approx 20-25$ K, среднемесячные $CKO_{Ta} \approx 2,8-4,0$ K, $CKO_{Ts} = 3,4-4,7$ K. Наибольшие ошибки отмечаются в конце зимы – начале весны при наличии снежного покрова и оттепели или ночью зимой при сильном приземном выхолаживании (спутнико-

вые оценки существенно выше наземных), а также летом во второй половине дня (из-за перегрева поверхности почвы спутниковые оценки ниже наземных).

Предлагаемый зарубежными авторами из методики MAIA вариант расчёта Ts с коэффициентами-константами, не зависящими от времени года и суток, для предикторов Т₁₁, (Т₁₁-Т₁₂) и (Т₁₁-Т₁₂)², показывает плохие результаты в рассматриваемом регионе на протяжении большей части года (ошибки намного больше, чем при использовании «динамических» коэффициентов).

Литература

- 1. Волкова Е.В. Оценки параметров облачного покрова, осадков и опасных явлений погоды по данным радиометра AVHRR с MИСЗ серии NOAA круглосуточно в автоматическом режиме // Современные проблемы дистанционного зондирования Земли из космоса. 2013. Т. 10. № 3. С. 66-74.
- Волкова Е.В., Успенский А.Б. Оценки параметров облачного покрова по данным геостационарного МИСЗ Meteosat-9 круглосуточно в автоматическом режиме // Современные проблемы дистанционного зондиро-2. вания Земли из космоса. 2010. Т. 7. № 3. С. 16-22.
- 3. Волкова Е.В., Успенский А.Б. Оценки параметров облачного покрова и осадков по данным сканирующих радиометров полярно-орбитальных и геостационарных метеоспутников // Исследование Земли из космоса. 2015. № 5. С. 30-43.
- 4. Музылев Е.Л., Успенский А.Б., Старцева З.П., Волкова Е.В., Кухарский А.В., Успенский С.А. Моделирование водного режима территории крупного сельскохозяйственного региона с использованием данных измерений геостационарных метеорологических спутников // Современные проблемы дистанционного зондирования Земли из космоса. 2013. Т. 10. № 3. С. 53-65.
- 5. Соловьев В.И., Успенский С.А. Мониторинг температуры поверхности суши по данным геостационарных метеорологических спутников нового поколения // Исследования Земли из космоса. 2009. № 3. С. 79–89.
- 6. Lavanant L. MAIA AVHRR cloud mask and classification // Scientific and validation document. Meteo-France.
- MF/DP/CMS/R&D/MAIA3, November 7, 2002. 37 pp. Sun Y.J., Wang J.-F., Zhang R.-H., Gillies R.R., Xue Y., Bo Y.-C. Air temperature retrieval from remote sensing data based on thermodynamics // Theoret. and Appl. Climatology, 2005. Vol. 30 (1), P. 37–48. LSA SAF. Product user manual. Land Surface Temperature (LST). SAF/LAND/IM/PUM_LST/2.5. Issue 2.5. 7.
- 8 24/09/2010. 49 pp.

Land surface, land air and effective temperature estimation for territories of Southern European Russia based on satellite data

E.V. Volkova, S.A. Uspensky

State Research Center "Planeta", Moscow 123242, Russia, *E-mail: quantocosa@bk.ru, uspenskys@planet.iitp.ru*

An automated technique has been developed for land surface (Ts), land air (Ta) and effective (Te) temperatures estimation for territories of Southern European Russia based on AVHRR/NOAA and SEVIRI/Meteosat-10 data. The computationally effective algorithm is based on Complex Threshold Method for cloud and cloud properties de-The computationally effective algorithm is based on Complex Threshold Method for cloud and cloud properties de-tection (Volkova, 2013, Volkova, Uspensky, 2010). It utilizes cloud clear measurements in channels 11 and 12 μ m. Two approaches have been discussed: "climate" and "operational". For the "climate" approach the coefficients for predictors T₁₁, (T₁₁-T₁₂) and (T₁₁-T₁₂)² are calculated for each month with ground-based in-situ data of Ta and Ts (twice a day, i.e. day and night for AVHRR data and for each measurement in case SEVIRI data is used). The drawbacks here are that we need a synchronous archive of ground-based and satellite measurements, and also that it is only possible to update the coefficients at the end of each period (one month). In the "operational" approach it is suggested to use dy-namic coefficients instead, those empirically depending on the height of the sun (h₀) and day number of the year (dat). Some minor accuracy decrease in temperature estimates is observed here, if compared to the "climate" approach. It is shown that biggest biases are observed under some of the following conditions: at the end of the winter - the beginning of the spring (while the snow cover is still present but thawing); extremely cold winter nights (satellite-based

estimates are much higher than ground-based measurements); hot summer afternoons (local overheating effects on the surface causes satellite estimates to be lower than the temperatures measured in-situ). While the scanning radiometers MSU-MR (Meteor-M series satellites) and MSU-GS (Electro-L series satellites) are in a way similar to the AVHRR and SEVIRI instruments respectively, it could be possible to use the same approach and adjust the developed technique for Ts, Ta and Te estimates to use MSU-MR and MSU-GS data.

Keywords: SEVIRI, Meteosat-10, AVHRR, NOAA, Land Air Temperature, Effective Temperature, Land Surface Temperature

> Accepted: 27.07.2016 DOI: 10.21046/2070-7401-2016-13-5-291-303

References

- Volkova E.V., Otsenki parametrov oblachnogo pokrova, osadkov i opasnyh yavlenii pogody po dannym radiome-1. tra AVHRR s MISZ seriii NOAA kruglosutochno v avtomaticheskom rezhime (Automatic estimation of cloud cover and precipitation parameters obtained by AVHRR NOAA for day and night conditions), Sovremennye *problemy distantsionnogo zondirovaniya Zemli iz kosmosa*, 2013, Vol. 10, No. 3, pp. 66–74. Volkova E.V., Uspenskii A.B., Otsenki parametrov oblachnogo pokrova po dannym geostatsionarnogo MISZ
- 2. Meteosat-9 kruglosutochno v avtomaticheskom rezhime (Day and night automatic estimation of cloud cover parameters using Meteosat-9 data), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2010, Vol. 7, No. 3, pp. 16–22. Volkova E.V., Uspenskii A.B., Otsenki parametrov oblachnogo pokrova i osadkov po dannym skaniruyushchih
- 3. radiometrov polyarno-orbital'nyh i geostatsionarnyh meteosputnikov (Detection and assessment of cloud cover and precipitation parameters using data from scanning radiometers of polar-orbiting and geostationary meteoro-logical satellites), *Issledovanie Zemli iz kosmosa*, 2015, No. 5, pp. 30–43. Muzylev E.L., Uspenskii A.B., Startseva Z.P., Volkova E.V., Kuharskii A.V., Uspenskii S.A., Modelirovanie vod-nogo rezhima territorii krupnogo sel'skohozyaistvennogo regiona s ispol'zovaniem dannyh izmerenii geostat-
- 4 sionarnyh meteorologicheskih sputnikov (Simulation of the water regime of a vast agricultural region territory utilizing measurement data from geostationary meteorological satellites), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2013, Vol. 10, No. 3, pp. 53-65.
- Solovyov V.I., Uspenskii S.A., Monitoring temperatury poverhnosti sushi po dannym geostatsionarnyh mete-5 orologicheskih sputnikov novogo pokoleniya (Monitoring of the land surface temperature using geostationary meteorological satellite data), *Issledovanie Zemli iz kosmosa*, 2009, No. 3, pp. 79–89.
- 6. Lavanant L., MAIA AVHRR cloud mask and classification. Scientific and validation document. Meteo-France.
- MF/DP/CMS/R&D/MAIA3, November 7, 2002. 37 p. Sun Y.J., Wang J.-F., Zhang R.-H., Gillies R.R., Xue Y., Bo Y.-C., Air temperature retrieval from remote sensing data based on thermodynamics, *Theoret. and Appl. Climatology*, 2005, Vol. 30 (1), pp. 37–48. LSA SAF. Product user manual. Land Surface Temperature (LST), SAF/LAND/IM/PUM_LST/2.5, Issue 2.5, 7.
- 8. 24/09/2010, 49 p.