Сопоставление радиометрических данных КМСС-М КА «Метеор-М» №2 с данными MODIS КА Terra и OLI Landsat-8

Т.В. Кондратьева¹, Б.С. Жуков¹, Л.И. Пермитина², И.В. Полянский¹

¹ Институт космических исследований РАН, Москва, 117997, Россия E-mail: tkondratieva@iki.rssi.ru ² Научный центр оперативного мониторинга Земли AO «Российские космические системы», Москва, 127490, Россия

E-mail: permitina@ntsomz.ru

Комплекс многозональной спутниковой съёмки (КМСС-М) работает с июля 2014 г. на борту КА «Метеор-М» № 2, который является вторым аппаратом (после КА «Метеор-М» № 1), входящим в состав Космического комплекса гидрометеорологического и океанографического обеспечения «Метеор-3М». КМСС-М включает в себя две камеры МСУ-201 и МСУ-202 с разрешением около 60 м и тремя спектральными зонами в видимом и ближнем ИК диапазонах, оптимизированными для съёмок суши, и одну камеру МСУ-250 с разрешением около 120 м и тремя спектральными зонами в видимом диапазоне, оптимизированными для мониторинга водных объектов. Камеры КМСС-М были радиометрически прокалиброваны на Земле. Ежегодно проводится полётная радиометрическая калибровка КМСС-М по однородному снежному покрову высокогорного Антарктического плато с точностью 6-7%. В данной работе сопоставляются измерения коэффициента спектральной яркости (КСЯ) природных объектов за период июль-сентябрь 2017 г., выполненные съёмочными системами КМСС-М, MODIS на KA Terra и OLI на KA Landsat-8. Среднеквадратическое отклонение КСЯ по данным КМСС-М и MODIS составило 0,015–0,028, между КМСС-М и OLI – 0,018–0,025 в каналах видимого диапазона и увеличивалось до 0,035-0,037 в ближнем ИК-диапазоне, вероятно, вследствие неучёта вариаций содержания водяного пара в атмосфере. Различие абсолютной калибровки каналов KMCC-M и MODIS не превышает 3,8%, а каналов видимого диапазона КМСС-М и OLI не хуже 5,5%. Различие абсолютной калибровки каналов ближнего ИК-диапазона КМСС-М и OLI не могло быть надёжно оценено на фоне вариаций содержания водяного пара.

Ключевые слова: КМСС-М, Метеор-М №2, MODIS, Terra, OLI, Landsat-8, коэффициент спектральной яркости, КСЯ, полётная радиометрическая калибровка, радиометрическая кросс-калибровка

Одобрена к печати: 19.02.2018 DOI: 10.21046/2070-7401-2018-15-2-19-28

Введение

Комплекс многозональной спутниковой съёмки КМСС-М работает более трёх лет на борту КА «Метеор-М» № 2, запуск которого состоялся в июле 2014 г. Космический аппарат «Метеор-М» № 2 является вторым аппаратом Космического комплекса гидрометеорологического и океанографического обеспечения «Метеор-3М» после КА «Метеор-М» № 1, который был запущен в 2009 г. Космические аппараты «Метеор-М» являются полярно-орбитальными метеоспутниками, движутся по круговым солнечно-синхронным орбитам с высотой около 830 км.

Комплекс многозональной спутниковой съёмки КМСС-М КА «Метеор-М» № 2, разработанный и изготовленный в ИКИ РАН, является модификацией КМСС на КА «Метеор-М» № 1 (Аванесов и др., 2013) и, так же как его предшественник, предназначен для решения метеорологических и природно-ресурсных задач.

Радиометрическое качество данных КМСС-М обеспечивается предполётной наземной калибровкой (Ваваев и др., 2009) и ежегодно проводимой полётной калибровкой по снежным полям Антарктиды (Жуков и др., 2014). Точность полётной калибровки КМСС-М оценивается в 6–7%.

В данной работе сравниваются коэффициенты спектральной яркости (КСЯ), измеряемые на верхней границе атмосферы съёмочными системами КМСС-М, MODIS на КА Terra и OLI на KA Landsat-8 для широкого круга природных объектов, ежедневный оперативный мониторинг состояния которых является основной задачей КМСС-М.

Характеристики КМСС-М, MODIS и OLI

Комплекс многозональной спутниковой съёмки КМСС-М космического аппарата предназначен для проведения съёмки земной поверхности в видимом и ближнем ИК спектральных диапазонах электромагнитного излучения.

В состав КМСС-М КА «Метеор-М» № 2 входят две идентичные камеры с фокусным расстоянием 100 мм, условно именуемые МСУ-201 и МСУ-202, и одна камера с фокусным расстоянием 50 мм, условно именуемая МСУ-250. Каждая камера имеет три ПЗС-линейки, закрытые индивидуальными светофильтрами. ПЗС-линейки установлены параллельно друг другу в фокальной плоскости объектива камеры и перпендикулярно направлению полёта КА. Спектральные зоны камер МСУ-201 (202) оптимизированы для исследования поверхности суши, а камеры МСУ-250 — для исследования акваторий.

Камеры КМСС-М установлены на приборную платформу КА таким образом, что оптическая ось МСУ-250 направлена в надир, оптические оси камер МСУ-201 (202) отклонены от направления в надир в плоскости, перпендикулярной плоскости орбиты движения КА, на угол $\pm 14^{\circ}$. Суммарная полоса обзора двух камер МСУ-201 и МСУ-202 при этом составляет около 960 км и примерно равна полосе обзора камеры МСУ-250 (940 км). Направления обзора каналов 1 и 3 каждой из камер МСУ-201 (202) отклонены в плоскости орбиты на угол 8,67° вперёд (1 канал) и назад (3 канал) по ходу движения КА, а спектральных каналов камеры МСУ-250 — на угол 16,95° вперёд (1 канал) и назад (3 канал).

Характеристики камер КМСС-М приведены в табл. 1.

Параметры	Камера	
	МСУ-201, МСУ-202	МСУ-250
Фотоприёмники	Три линейных ПЗС	
Число элементов в строке	3 × 7926	
Число камер	2	1
Фокусное расстояние объектива, мм	100	50
Угол поля зрения, град	31	58
Захват, км (<i>H</i> = 830 км)	960 (двумя камерами)	940
Разрешение, м (<i>H</i> = 830 км)	60	120
Спектральные каналы, нм (на уровне 0,5)	№ 1: 755870 № 2: 630680 № 3: 535575	№ 1: 450510 № 2: 430455 № 3: 610660
Частота строк, Гц	156,25	
Информационный поток одной камеры, Мбит/с	~30	
Разрядность АЦП/изображения, бит	16/8	
Динамический диапазон ПЗС	5000	
Масса, кг	2,9 2,3	
Максимальное энергопотребление, Вт	6,8 6,8	
Наклонение орбиты КА «Метеор-М» № 2, град	98,701	

Таблица 🛛	1.	Характеристики	камер	KMCC-M
-----------	----	----------------	-------	--------

Спектрорадиометр MODIS является оптико-механическим сканером и имеет 36 спектральных каналов в диапазоне длин волн от 0,4 до 14,4 мкм. КА Тегга, на котором установлен MODIS, движется по приполярной солнечно-синхронной орбите, высота которой составляет около 705 км. Ширина полосы обзора MODIS при угле сканирования $\pm 55^{\circ}$ составляет 2330 км, пространственное разрешение — от 250 до 1000 м.

Основные характеристики MODIS приведены в табл. 2.

Параметр	Значение
Угол сканирования	±55°
Полоса обзора (H = 705 км)	2330 км
Разрешение в надире (H = 705 км)	250 м (зоны 1–2), 500 м (зоны 3–7), 1 км (зоны 8–36)
Спектральные зоны (36) (видимый, ближний, средний, тепловой ИК)	 16 зон в диапазоне 0,41 мкм, в том числе зоны: 1 — 620670 нм (хлорофилл растений); 2 — 841876 нм (облачность и растительность); 4 — 545565 нм (зелёная растительность); 9 — 438448 нм (наблюдение за хлорофиллом); 10 — 483493 нм (наблюдение за хлорофиллом); 17 — 890920 нм (параметры облачности и атмосферы); 19 — 915965 нм (параметры облачности и атмосферы); 4 зоны в диапазоне 1,22,4 мкм; 6 зон в диапазоне 35 мкм; 10 зон в диапазоне 615 мкм
Разрядность изображения, бит	12
Наклонение орбиты КА Terra, град	98,201

Таблица 2. Характеристики спектрорадиометра MODIS на КА Terra

Точность абсолютной калибровки MODIS составляет около 5% и поддерживается в полёте с помощью его внутренней калибровки, калибровки по Луне и наземным тестовым участкам (Wu и др., 2013).

Телескопическая система OLI (Operational Land Imager) на KA Landsat-8 состоит из четырёх неподвижных зеркал, в фокальной плоскости установлены 14 модулей, в каждом из которых находятся по 10 линейных сенсоров различных спектральных диапазонов (один из сенсоров закрыт непрозрачным светофильтром и используется для внутренней калибровки прибора). Сенсор OLI осуществляет съёмку в режиме pushbroom в девяти спектральных диапазонах в полосе шириной 185 км при высоте солнечно-синхронной приполярной орбиты KA Landsat-8 705 км (*maбл. 3*). Точность внутренней радиометрической калибровки OLI составляет 5%.

Таблица 3. Характеристики спектрорадиометра OLI на KA Landsat-8	

Параметр	Значение
Полоса обзора (H = 705 км)	185 км
Спектральные зоны (9) (видимый, ближний ИК, панхроматический)	 1 — 433453 нм (побережья и аэрозоли); 2 — 450515 нм (синий); 3 — 525600 нм (зелёный); 4 — 630680 нм (красный); 5 — 845885 нм (ближний ИК, NIR); 6 — 15601660 нм (ближний ИК, SWIR 2); 7 — 21002300 нм (ближний ИК, SWIR 3); 8 — 500680 нм (панхроматический, PAN); 9 — 13601390 нм (перистые облака, SWIR)
Разрешение в надире ($H = 705 \text{ км}$)	30 м (зоны 1–7,9), 15 м (зона 8)
Разрядность изображения, бит	12
Наклонение орбиты KA Landsat-8, град	98,22

Методика сопоставления КСЯ природных объектов, измеряемых КМСС-М, MODIS и OLI

В настоящей работе анализируются данные двух камер в составе КМСС-М — МСУ-201 и МСУ-202, с помощью которых проводится ежедневная съёмка территории России и близлежащих государств. Имеющихся данных камеры МСУ-250 для сопоставления с MODIS и OLI в настоящее время недостаточно: МСУ-250 включается эпизодически, поскольку проводит съёмку в той же полосе обзора с худшим разрешением и поэтому имеет меньший спрос у пользователей.

Для проведения кросс-калибровки камер КМСС-М, MODIS и OLI оценивались и сопоставлялись КСЯ природных объектов на верхней границе атмосферы, измеряемые в спектральных зонах этих приборов.

КСЯ на верхней границе атмосферы определяется соотношением:

$$\rho_i = \frac{L_i}{L_{S,i}} = \frac{\pi L_i}{F_{S,i} \cos \theta_s},$$

где $L_i = \int s_i(\lambda)L(\lambda)d\lambda / \int s_i(\lambda)d\lambda$ — зональная яркость системы «поверхность – атмосфера», являющаяся средневзвешенным значением спектральной плотности энергетической яркости $L(\lambda)$, где в качестве весовой функции используется функция спектральной чувствительности (ФСЧ) $s_i(\lambda)$ спектральной зоны *i* съёмочной системы; $L_{S,i} = (F_{S,i} \cos \theta_s) / \pi$ — яркость идеального ламбертовского отражателя на верхней границе атмосферы в зоне *i*; $F_{S,i} = \int s_i(\lambda)F_s(\lambda)d\lambda / \int s_i(\lambda)d\lambda$ — зональный поток солнечного излучения на верхней границе атмосферы; $F_s(\lambda)$ — спектральный поток солнечного излучения; λ — длина волны; θ_s — зенитный угол Солнца.

Функции ФСЧ каналов КМСС-М, MODIS и OLI на фоне модельных спектров отражения природных объектов представлены на *puc. 1*.

«Зелёный» канал 3 камер КМСС-М (535–580 нм) близок к каналу 4 MODIS и к каналу 3 OLI, а «красный» канал 2 (630–680 нм) близок к каналу 1 MODIS и каналу 4 OLI. Однако ИК-канал 1 камер КМСС-М (755–870 нм) значительно шире, чем соответствующие спектральные каналы 2 MODIS и 5 OLI, и в отличие от них содержит полосу поглощения водяного пара на 820 нм и край сильной полосы поглощения водяного пара с центром на 930 нм, а также полосу поглощения кислорода на 760 нм. Для учёта вариаций содержания водяного пара в атмосфере при сопоставлении данных КМСС-М и MODIS дополнительно будет использоваться канал 17 MODIS (890–920 нм). К сожалению, аналогичный канал в OLI отсутствует.

Значения КСЯ, измеряемые в относительно широких спектральных зонах указанных съёмочных систем, зависят от спектрального состава регистрируемого излучения. Регрессионные соотношения для пересчёта значений КСЯ природных объектов, измеряемых

на верхней границе атмосферы, в спектральных зонах камер КМСС-М по значениям КСЯ, измеряемым в спектральных зонах MODIS и OLI, приведены в *табл. 4* (см. с. 23).

Рис. 1. Функции спектральной чувствительности каналов камер МСУ-201 (202), входящих в состав КМСС-М (показаны красным цветом), соответствующих им каналов МОDIS (показаны синим цветом) и каналов OLI (показаны зелёным цветом) на фоне модельных спектров отражения природных объектов

Эти соотношения были получены по методике, изложенной в работе (Жуков и др., 2014), путём моделирования спектров отражения на верхней границе атмосферы большого числа природных объектов (почвы, растительности, воды, снега, облаков) при различном состоянии атмосферы и различной высоте Солнца. Эти соотношения немного отличаются для камер МСУ-201 и МСУ-202 из-за небольшого различия их ФСЧ.

Таблица 4. Регрессионные соотношения для пересчёта значений КСЯ между спектральными зонами камер КМСС-М, MODIS (mod_i — КСЯ в зоне i MODIS) и MODIS (oli_i — КСЯ в зоне i OLI)

Камера, спектральный канал	Регрессионные соотношения		
	MODIS	OLI	
МСУ-201, канал 1 (755-870 нм)	0,658×mod_2+0,313×mod_17 (CKO = 0,0021)	$0,885 \times \text{oli}_5 (\text{CKO} = 0,0024)$	
МСУ-201, канал 2 (630-680 нм)	$1,015 \times \text{mod}_1 (\text{CKO} = 0,0019)$	$1,002 \times \text{oli}_4 (CKO = 0,0025)$	
МСУ-201, канал 3 (535-580 нм)	$0,988 \times \text{mod}_4 (\text{CKO} = 0,0089)$	$1,009 \times oli_3 (CKO = 0,023)$	
МСУ-202, канал 1 (755-870 нм)	$0,680 \times \text{mod}_2 + 0,285 \times \text{mod}_{17}$ (CKO = 0,0018)	$0,885 \times \text{oli}_5 (\text{CKO} = 0,0029)$	
МСУ-202, канал 2 (630-680 нм)	$1,017 \times mod_1 (CKO = 0,0020)$	$1,004 \times \text{oli}_4 (CKO = 0,0026)$	
МСУ-202, канал 3 (535-580 нм)	$0,990 \times \text{mod}_4 (\text{CKO} = 0,0099)$	$1,011 \times oli_3 (CKO = 0,023)$	

Среднеквадратическая ошибка (СКО) пересчёта КСЯ между спектральными зонами камер КМСС-М и MODIS, рассчитанная по всем рассмотренным объектам и условиям наблюдения, составляет ~0,002 в каналах 2 и 3 камер КМСС-М и увеличивается до ~0,01 в канале 1, в котором ФСЧ КМСС-М и MODIS существенно различаются.

Величина СКО пересчёта КСЯ между спектральными зонами камер КМСС-М и OLI в каналах 2 и 3 КМСС-М составляет 0,002–0,003, однако увеличивается до 0,023 в канале 1 КМСС-М, т.е. значительно больше, чем в случае MODIS, из-за невозможности учёта по данным OLI влияния вариаций содержания водяного пара на измерения камер КМСС-М в этом канале.

Кросс-калибровка КМСС-М с MODIS и OLI

Данные КМСС-М были получены из архива Научного центра оперативного мониторинга Земли (НЦ ОМЗ АО «Российские космические системы»). Данные КМСС-М проходили радиометрическую и геометрическую коррекцию и географическую привязку (Жуков и др., 2008) и загрублялись до 1 км, соответствующего разрешению MODIS. Данные MODIS с разрешением 1 км, обработанные до уровня 1В (радиометрически калиброванные и географически привязанные изображения), были получены из Системы спутниковых данных наблюдения Земли информационной системы HACA (EOSDIS NASA) (https://earthdata.nasa.gov).

На идентичных изображениях КМСС-М и MODIS (*puc. 2*, см. с.24) в области перекрытия сцен съёмки выбирались безоблачные фрагменты с изображением природного объекта, имеющего однородные спектрально-яркостные характеристики.

Средние значения КСЯ (а также соответствующие им значения углов Солнца и наблюдения) вычислялись по единому (географическому) полигону, состоящему в среднем из 500 пикселей, поканально для КМСС-М и MODIS.

Полученные значения КСЯ для спектральных зон MODIS пересчитывались с помощью регрессионных соотношений, приведённых в *табл. 4*, в значения КСЯ соответствующих каналов камер КМСС-М и сравнивались со значениями КСЯ, реально измеренными КМСС-М. Величины КСЯ были рассчитаны для основных классов природных объектов: растительность, почва, вода, а также снег Антарктиды. Для камер МСУ-201 и МСУ-202 было проанализировано более 100 полигонов, располагающихся на территории России и соседних государств (*puc. 3*, см. с. 24).

Рис. 2. Пример выбора тестового участка (обозначен кругом красного цвета) на изображениях КМСС-М, MODIS и OLI в районе Аральского моря

Puc. 3. Мозаика обработанных изображений КМСС-М, наложенная на основу Google Earth

При выборе тестовых объектов для сопоставления значений КСЯ, измеряемых КМСС-М и MODIS, учитывались следующие требования: подбор ближайших по времени изображений КМСС-М и MODIS (в интервале времени не более двух часов); наличие безоблачных и стабильных атмосферных условий в интервале времени между съёмками КМСС-М и MODIS; пространственное совмещение данных КМСС-М и MODIS; выбор достаточно больших и однородных тестовых объектов; учёт различия спектральных зон КМСС-М и MODIS.

Аналогичный подход использовался для проведения кросс-калибровки КМСС-М и OLI КА Landsat-8 (см. *рис. 2*). Данные OLI были получены с официального сайта Геологической службы США (USGS, https://earthexplorer.usgs.gov). Использовались данные первого уровня

обработки в формате GeoTIFF. Поскольку пространственное разрешение в интересуемых спектральных каналах OLI (каналы 3, 4, 5) составляет 30 м, данные OLI загрублялись до 60 м, что соответствует пространственному разрешению КМСС-М.

Использование КСЯ ρ_i вместо яркости L_i позволяет частично компенсировать влияние различия высоты Солнца в моменты съёмок КМСС-М, MODIS и OLI. Дальнейший учёт различий высоты Солнца и углов наблюдения в моменты съёмок КМСС-М, MODIS и OLI на значения КСЯ при большом разнообразии снимаемых объектов трудно реализуем и поэтому не проводился.

Результаты кросс-калибровки камер MCУ-201 и MCУ-201 с данными MODIS и OLI представлены на *рис. 4* и *5*, на которых синим цветом показаны соотношения KCЯ различных классов природных объектов по данным, измеренным камерами MCУ-201 (202) и пересчитанным по данным MODIS в соответствующих спектральных каналах; красным цветом показаны аналогичные соотношения для MCУ-201 (202) и OLI.

В идеальном случае значения КСЯ по измерениям MCУ-201 (202), MODIS и OLI должны совпадать и ложиться на биссектрису угла между осями абсцисс и ординат. Из графиков видно, что это хорошо выполняется для данных MCУ-201 (202) и MODIS: отклонение коэффициента регрессии КСЯ между этими данными от 1 составило 1,8–3,8% (*maбл. 5 и 6*, см. с. 26), а СКО значений КСЯ по данным этих сенсоров не превышает 0,028. Отклонение коэффициента регрессии от 1 можно рассматривать как отклонение абсолютной радиометрической калибровки MCУ-201 (202) и MODIS, которое не превышает 3,8%. Разброс значений КСЯ около линии регрессии можно объяснить различием условий наблюдения объектов этими сенсорами.

Рис. 4. Соотношение КСЯ природных объектов в спектральных каналах МСУ-201 по измерениям MCУ-201 и MODIS (показано синим цветом) и по измерения MCУ-201 и OLI (показано красным цветом)

Рис. 5. Соотношение КСЯ природных объектов в спектральных каналах МСУ-202 по измерениям МСУ-202 и MODIS (показано синим цветом) и по измерения МСУ-202 и OLI (показано красным цветом)

Таблица 5. Сопоставление КСЯ природных объектов в спектральных каналах МСУ-201 по данным МСУ-201, MODIS и OLI

Параметры	Спектральные каналы камеры МСУ-201		
	Канал 1 (755—870 нм)	Канал 2 (630-680 нм)	Канал 3 (535-580 нм)
MODIS			
СКО КСЯ	0,028	0,019	0,019
Уравнение линейной регрессии значений КСЯ	$\rho_{\rm MCY} = 0.962 \times \rho_{\rm MODIS}$	$\rho_{MCY} = 1,018 \times \rho_{MODIS}$	$\rho_{MCY} = 1,027 \times \rho_{MODIS}$
Отклонение коэффициента регрессии от 1, %	3,8	1,8	2,7
	^	OLI	
СКО КСЯ	0,037	0,025	0,021
Уравнение линейной регрессии значений КСЯ	$ \rho_{\rm MCY} = 0,898 \times \rho_{\rm OLI} $	$\rho_{MCY} = 0.964 \times \rho_{OLI}$	$\rho_{MCY} = 1,012 \times \rho_{OLI}$
Отклонение коэффициента регрессии от 1, %	10,2	3,6	1,15

Таблица 6. Сопоставление КСЯ природных объектов в спектральных каналах МСУ-202 по данным МСУ-202, MODIS и OLI

Параметры	Спектральные каналы камеры МСУ-202			
	Канал 1 (755—870 нм)	Канал 2 (630—680 нм)	Канал 3 (535—580 нм)	
MODIS				
СКО КСЯ	0,015	0,016	0,016	
Уравнение линейной регрессии значений КСЯ	$\rho_{\rm MCY} = 0.966 \times \rho_{\rm MODIS}$	$\rho_{\rm MCY} = 0.967 \times \rho_{\rm MODIS}$	$\rho_{\rm MCY} = 0.965 \times \rho_{\rm MODIS}$	
Отклонение коэффициента регрессии от 1, %	3,4	3,3	3,5	
	OLI			
СКО КСЯ	0,035	0,023	0,018	
Уравнение линейной регрессии значений КСЯ	$\rho_{MCY} = 0.895 \times \rho_{OLI}$	$\rho_{MCY} = 0.945 \times \rho_{OLI}$	$\rho_{MCY} = 0.956 \times \rho_{OLI}$	
Отклонение коэффициента регрессии от 1, %	10,5	5,5	4,4	

Сопоставление КСЯ природных объектов по данным МСУ-201 (202) и OLI показало, что в «зелёном» и «красном» спектральных каналах камер МСУ-201 (202) отклонение коэффициента регрессии от 1 (т.е. расхождение абсолютной калибровки) составляет 1,15-5,5%, а СКО значений КСЯ — 0,018—0,025. В ближнем ИК-канале расхождение между данными этих сенсоров увеличивается: отклонение коэффициента регрессии от 1 возрастает до 10,2-10,5%, а СКО — до 0,035-0,037. Это необязательно связано с ухудшением взаимной калибровки сенсоров, поскольку в данном случае не учитываются вариации содержания водяного пара в атмосфере, к которым чувствительны ИК-каналы МСУ-201 (202). В частности, значения КСЯ почвенно-растительных и водных объектов в этих каналах по данным МСУ-201 (202) систематически ниже, чем по данным OLI, поскольку наблюдения указанных объектов проводятся в средних широтах при более высоком содержании водяного пара в атмосфере, чем в случае антарктического снега. Это говорит о необходимости использовать при сопоставлении данных этих сенсоров в ближнем ИК-канале различные регрессионные соотношения для средних и антарктических широт.

Выводы

При сопоставлении КСЯ природных объектов по данным КМСС-М и MODIS отличие коэффициента линейной регрессии от 1, которое можно рассматривать как оценку расхождения абсолютной калибровки этих сенсоров, составляет 1,8–3,8% в зависимости от спектрального канала, а СКО КСЯ не превышает 0,028.

При сопоставлении данных КМСС-М в «зелёном» и «красном» спектральных каналах с данными OLI отличие коэффициента линейной регрессии от 1 (расхождение абсолютной калибровки) составляет 1,15–5,5%, а СКО КСЯ — 0,018–0,025. В ближнем ИК-канале расхождение между данными этих сенсоров увеличивается: отклонение коэффициента регрессии от 1 возрастает до 10,2–10,5%, а СКО — до 0,035–0,037, что можно объяснить невозможностью учёта вариаций содержания водяного пара в атмосфере. Это говорит о необходимости использовать при сопоставлении данных этих сенсоров в ближнем ИК-канале различные регрессионные соотношения для средних и антарктических широт.

Литература

- 1. *Аванесов Г.А., Полянский И.В., Жуков Б.С., Никитин А.В., Форш А.А.* Комплекс многозональной спутниковой съёмки на борту КА «Метеор-М» № 1: три года на орбите // Исследование Земли из космоса. 2013. № 2. С. 74–83.
- 2. Ваваев В.А., Василейский А.С., Жуков Б.С., Жуков С.Б., Куркина А.Н., Полянский И.В. Наземная калибровка камер КМСС для КА «Метеор-М» № 1 // Современные проблемы дистанционного зондирования Земли из космоса. 2009. Вып. 6. Т. 1. С. 251–258.
- 3. Жуков Б. С., Василейский А. С., Жуков С. Б., Зиман Я. Л., Полянский И. В., Бекренев О. В., Пермитина Л. И. Предварительная обработка видеоданных КМСС с КА «Метеор-М» // Современные проблемы дистанционного зондирования Земли из космоса. 2008. Вып. 5. Т. 1. С. 260–266.
- 4. Жуков Б. С., Кондратьева Т. В., Полянский И. В., Пермитина Л. И. Полетная радиометрическая кросс-калибровка комплекса многозональной спутниковой съемки на КА «Метеор-М» №1 по спектрорадиометру MODIS на КА Тегга // Современные проблемы дистанционного зондирования Земли из космоса. 2014. Т. 11. № 2. С. 123–137.
- 5. *Wu A.S., Xiong X.X., Doelling D.R., Morstad D., Angal A., Bhatt R.* Characterization of Terra and Aqua MODIS VIS, NIR, and SWIR Spectral Bands' Calibration Stability // IEEE Transactions on Geoscience and Remote Sensing. 2013. V. 51. No. 7. P. 4330–4338.

Reflectance data comparison of multispectral satellite imaging system KMSS-M on-board Meteor-M No. 2, MODIS on Terra and OLI on Landsat-8

T. V. Kondratieva¹, B. S. Zhukov¹, L. I. Permitina², I. V. Polyanskiy¹

 ¹ Space Research Institute RAS, Moscow 117997, Russia E-mail: tkondratieva@iki.rssi.ru
 ² Research Center for Earth Operative Monitoring of Russian Federal Space Agency, Moscow 127490, Russia E-mail: permitina@ntsomz.ru

The multispectral satellite imaging system KMSS-M is operated on-board Meteor-M No. 2 satellite since July 2014. Meteor-M No. 2 is the second satellite after Meteor-M No. 1 in the Meteor-3M series of polar-orbiting weather satellites. KMSS-M consists of two cameras with a resolution of 60 m in three channels in the visible and near IR spectral range, which were optimized for land surface monitoring, and of one camera with a resolution of 120 m in three channels in the visible range, which

were optimized for imaging waters. The KMSS-M cameras were radiometrically calibrated in-lab. The in-flight calibration of KMSS-M with an accuracy of 6-7% is performed yearly using images of homogeneous snow cover on the high-altitude Antarctic Plateau with accounting for its scattering law. Comparison of reflectance of a wide range of natural objects, which were measured by the KMSS-M cameras and MODIS/Terra, showed that their root-mean-squared (RMS) deviation was in the range of 0.015-0.028. A similar comparison of the KMSS-M and OLI/Landsat-8 data resulted in RMS-deviation of reflectance values of 0.018-0.025 in the visible channels. The deviation increased to 0.035-0.037 in the near infrared KMSS-M channel probably due to its sensitivity to water vapor content variation in the atmosphere. The absolute calibration discrepancy between KMSS and MODIS was estimated to be within 3.8%, between the visible channels of KMSS-M and OLI – within 5.5%. The absolute calibration discrepancy between the near IR channels of KMSS-M and OLI could not be reliably estimated due to the water vapor variations.

Keywords: KMSS-M, multispectral satellite imaging system, Meteor-M No. 2, MODIS, Terra, OLI, Landsat-8, reflectance, in-flight radiometric calibration

Accepted: 19.02.2018 DOI: 10.21046/2070-7401-2018-15-2-19-28

References

- 1. Avanesov G.A., Polyanskiy I.V., Zhukov B.S., Nikitin A.V., Forsh A.A., Kompleks mnogozonal'noi sputnikovoi s"emki na bortu KA "Meteor M" No. 1: tri goda na orbite (Multispectral Satellite Imaging System Aboard the Meteor-M No. 1 Spacecraft: Three Years in Orbit), *Issledovanie Zemli iz kosmosa*, 2013, Vol. 2, pp. 74–83.
- Vavaev V.A., Vasileiskii A.S., Zhukov B.S., Zhukov S.B., Kurkina A.N., Polyanskiy I.V., Nazemnaya kalibrovka kamer KMSS dlya KA "Meteor-M" No. 1 (On-ground calibration of KMSS cameras for Meteor-M No. 1), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2009, Issue 6, Vol. 1, pp. 251–258.
- Zhukov B. S., Vasileiskii A. S., Zhukov S. B., Ziman Ya. L., Polyanskiy I. B., Bekrenev O. V., Permitina L. I., Predvaritel'naya obrabotka videodannykh KMSS c KA "Meteor-M" (Preprocessing of imaging data from KMSS on Meteor-M s/c), *Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa*, 2008, Issue 5, Vol. 1, pp. 260–266.
- 4. Zhukov B. S., Kondratieva T. V., Polyanskiy I. V., Permitina L. I., Poletnaya radiometricheskaya kross-kalibrovka kompleksa mnogozonal'noi sputnikovoi s"emki na KA "Meteor-M" No. 1 po spektroradiometru MODIS na KA Terra (In-flight radiometric cross-calibration of Multispectral Satellite Imaging System onboard Meteor-M No. 1 relative to spectroradiometer MODIS on-board Terra), *Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa*, 2014, Vol. 11, No. 2, pp. 123–137.
- Wu A. S., Xiong X. X., Doelling D. R., Morstad D., Angal A., Bhatt R., Characterization of Terra and Aqua MODIS VIS, NIR, and SWIR Spectral Bands' Calibration Stability, *IEEE Trans. Geosci. Remote Sens.*, 2013, Vol. 51, No. 7, pp. 4330–4338.