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Abstract. The paper considers the development of a model for precipitation field nowcasting 
using the data obtained from the Himawari-8 satellite and a GFS numerical forecast model. 
The  nowcasting method employs a convolutional and recurrent neural network architecture. 
A peculiarity of the developed model is a possibility to make a forecast using no ground-based 
meteorological radars data. The authors present preliminary research results as exemplified by 
the precipitation field nowcasting for a  30-minute period and the 60-minute forecast of the 
cloud cover optical depth distribution. Finally, the paper outlines the areas for further research 
with the account to the identified drawbacks of the existing forecasting algorithm software 
implementation.
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1. Introduction
Weather nowcasting with a high spatiotemporal resolution is currently one of the most actively studied 
areas in hydrometeorology. Timely and precise forecasts of dangerous weather events are crucial for 
the operation of urban services, regional aviation, agriculture, as well as issuing community warnings.

The increased interest to nowcasting from the scientific community is facilitated by the continu-
ously improving quality and growing amount of data obtained due to the commissioning of new satel-
lites and ground meteorological radars as well as the development of computational forecasting meth-
ods. At the same time the major part of the current research largely uses radar data for nowcasting as 
being the most plausible [1–4] in comparison with the data generated by the computational forecast 
models and geostationary satellites. Despite the fact that over the last decades the model forecasts pre-
cision has considerably increased, it requires a lot of computational and time resources to conduct 
computations with a high spatiotemporal resolution comparable with the radar data resolution.

In view of the insufficient coverage of the Far East territory with the data of ground meteorological 
radars satellite data become increasingly important. Thus, this paper considers Himawari-8 with an 
on-board AHI (Advanced Himawari Imager) device having a high spatial resolution (up to 2 km) and 
the shooting interval of 10 min (it allows partially compensating for the drawbacks of ground observa-
tion). In addition, an effective range of radar action is significantly limited while geostationary satel-
lites can be used to obtain a global scale image.

The present paper dwells upon the development of a nowcasting model for the cloud cover and 
precipitation dynamics. The key peculiarity of the developed model is a possibility of precipitation 
nowcasting using no radar data. The paper comprises the preliminary research results and outlines 
further prospects of research in the area.
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2. Nowcasting methods
Recently, a lot of nowcasting models have been presented, and a large part of them can be provisional-
ly divided into two big groups: the methods based upon the algorithms of optical flow and the models 
based upon machine learning (ML).

Optical flow method varieties are successfully applied for the nowcasting of cloudiness drifting and 
precipitation fields for a short period (up  to 3 hours) [5, 6]. These methods are based upon the as-
sumption that the values of each specific pixel, pixel group or their gradient are not subject to signifi-
cant changes in time while their displacement on a pair of images is negligible. The optical flow algo-
rithm operation results in a map of pixel motion vectors for a pair of images. This method is relatively 
simple in terms of implementation, has a high operation speed, is suitable for shot interpolation and 
extrapolation and demonstrates high precision when large-scale cloudiness is forecast [6].

The drawbacks of optical flow algorithms can be logically derived from the aforementioned as-
sumptions about the limited observed object changeability. Convective cloudiness is a complex dy-
namic system and can significantly change within a short time passing through the stages of growth 
and disintegration which contradicts with these assumptions. It entails a rapid growth in the number 
of errors at the nowcasting of such cloud drifting [5].

Another approach to nowcasting consists in the use of machine learning (ML) algorithms. The ad-
vantage of this approach is its flexibility which gives a possibility to use complex structures as input 
data, for example, a three-dimensional distribution of temperature, humidity, reflecting property val-
ues by radar data, etc. [8]. Also, ML algorithms allow modeling non-linear interconnections between 
the properties which is their advantage of the optical flow algorithms.

Convolution neural networks (CNN) and recurrent neural networks (RNN) have become the most 
wide-spread for ML nowcasting, with CNN suitable for image processing and RNN having the mem-
ory effect. The effort of combining the advantages of CNN and RNN resulted in the development of 
hybrid architectures such as ConvLSTM, PredNet, etc., making them the most suitable for nowcast-
ing [4, 9, 10].

Today a neural network approach is being successfully applied by the combined data from radars, 
satellites and computational forecast models [10]. However, such systems are efficient only for the ter-
ritory where such system has been previously trained and, in most cases, where ground radar data are 
available [2]. The present paper describes the process of developing a precipitation nowcasting model 
for the Far East region of Russia providing no radar data are available.

3. Input data
To train a neural network model, the authors formed a set of data including the AHI channels of 
a  geostationary satellite Himawari-8 in the visible and IR ranges (0.6, 2.3, 3.9, 6.2, 9.6, 12.4 and 
13.3 um), forecast fields of a GFS (Global Forecasting System) numerical model, such as air tempera-
ture, dew point and a relative humidity on the standard isobar levels as well as the terrain above-sea 
level. All the data used were obtained for the territory of the Far East region covering the periods of 
July 2018 and 2019 during the daytime.

The set of training data consists of 133 thousand shot sequences, each of them including 13 images 
128×128 pixels with a horizontal resolution 2 km and a time interval of 10 minutes. As the GFS model 
has a three-hour forecast interval (step), the model data are interpolated over time up to 10 minutes 
with the use of the optical flow algorithm by a modified Brox’s method [7].

The algorithm output data are binarized maps of precipitation fields for up to 1 hour duration. The 
map data are formed by the precipitation detection algorithm described in the next section of the paper.

4. The method for cloud and precipitation forecasting
For nowcasting of precipitation fields and cloudiness drift the authors use the method based on the 
convolution-recurrent neural network PredNet [11]. This architecture has been developed for the ex-
trapolation of the video sequence images and further successfully adapted for nowcasting tasks on the 
data of ground meteorological radars [10].

The key components of the architecture PredNet are ConvLSTM cells (Convolutional Long Short-
Term Memory) capable of retaining the information received at the previous levels of data sequence 
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[11]. A characteristic feature of ConvLSTM cells against “classical” LSTM cells is a more efficient im-
age processing as there are convolution layers at the cell input [4].

A sequence in the form of the 4-dimensional tensor Xt,w,h,p is sent to the input of the abovemen-
tioned neural network, where t — image number w, h — image height and width, p — parameter (iso-
bar level temperature, IR channel, etc.). The output data are the images t + n where n — number of 
the forecast image. This paper considers a nowcasting method where each number n corresponds to 
a  specific neural network model trained for some fixed forecast period. Within further research the 
authors will also consider the options when the only neural network model is used for a forecast of any 
duration.

To compensate for the absence of micro-wave range data, the research studies a possibility of de-
veloping such an algorithm to estimate precipitation fields and their instantaneous intensity with the 
use of IR range data as well as the information obtained by means of numerical forecast models. At the 
current research stage, the authors apply the algorithm based upon an empirical dependence of a poten-
tial precipitation cloudiness and its height on precipitation intensity as a precipitation detector [12]. The 
obtained intensity value is rather approximated, and the algorithm for its obtaining should be specified.

5. Preliminary research results
The papers considers the possibility of precipitation field and cloud drifting nowcasting, and thus, two 
neural network models are trained. The first model uses a full set of input parameters enumerated in 
the section “reference data” and is intended for precipitation nowcasting. The second model is used in 
the optical flow “mode”: cloud drifting forecast is made only on the basis of one visible channel or the 
cloudiness parameter.

Figure 1 shows the results of the nowcasting algorithm operation in the optical flow “mode” for the 
period of 60 minutes; the values of cloudiness optical depth are used as a forecast parameter. In gen-
eral, the authors point to a right direction of cloud drifting; however, the range of problems can be also 
identified.

Figure 1. Optical depth forecasting: (a), (d) — opitcal depth distribution at the initial moment; (b), (e) — real 
optical depth distribution in 60 minutes; (c), (f) — forecasting results in 60 minutes.
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The upper row in figure 1 demonstrates the clouds motion left-to-right. Here it is evident that the 
cloudiness occurring in the left part of figure 1b is absent in the forecast image (Figure 1c). This prob-
lem is caused by the fact that at the current development stage the algorithm does not take account for 
the information beyond the forecast region. Another problem is the insufficiently precise forecast of 
optical depth values which manifests in the pixel intensity and some image “blurriness”. Both prob-
lems are the drawbacks of the current implementation of the nowcasting model, and the researchers 
keep working to eliminate them.

The results of precipitation field distribution nowcasting for 30 minutes in comparison with the ac-
tual algorithm data for their detection are provided in figure 2. When comparing the results in the gen-
eral case one can point that most forecast areas coincide with the actual precipitation distribution by 
the algorithm data for their detection. However, the nowcasting algorithm is prone to overestimation 
of the size of precipitation forming cloudiness regions. A more detailed forecasting is one of the fur-
ther research areas. The resolution of this problem is defined not only by the precision of the operation 
of the nowcasting model itself but also by the quality of the detection algorithm operation, the data of 
which are used for neural network training.

Figure 2. Precipitation fields nowcasting in 30 minutes starting from 22:50 UTC 15 July 2018: (a) — real precipi-
tation fields distribution; (b) — nowcasting results.

6. Conclusion
The paper provides the preliminary research results on precipitation and cloud drifting nowcasting 
based on the data obtained from the Himawari-8 geostationary satellite and a computational forecast-
ing GFS model. The nowcasting algorithm is based on the model of a convolution-recurrent neural 
network PredNet previously developed for optical flow tasks.

The specified drawbacks of the current algorithm implementation point to the necessity of fur-
ther research conduct. One of the promising areas for model improvement is the improvement of the 
PredNet architecture by means of LSTM blocks’ modification to increase the duration of forecasts 
and their precision. In addition, neural network training should be conducted by means of the genera-
tive-adversarial network method (Conditional Generative-Adversarial Networks) [13].

Acknowledgements
In the process of the nowcasting model development the data of CCU “FEB RAS Data Center” 
(Sorokin et al., 2017). The computations were conducted by the methods and technologies developed 
with the funding of the Russian Foundation for Basic Research (RFBR) in the framework of a scien-
tific project No. 18-29-03196.



22� Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 17(6), 2020

A. I. Andreev et al.  Development of precipitation nowcasting method using geostationary satellite data

8. References
[1]	 Agrawal S., Barrington L., Bromberg C., Burge J., Gazen C., Hickey J., Machine Learning for 

Precipitation Nowcasting from Radar Images, arXiv preprint arXiv:1912.12132, 2019, 6 p., available at: 
https://arxiv.org/pdf/1912.12132.pdf.

[2]	 Lebedev V., Ivashkin V., Rudenko I., Ganshin A., Molchanov A., Ovcharenko S., Grokhovetskiy R., 
Bushmarinov I., Solomentsev D., Precipitation nowcasting with satellite imagery, 25th ACM SIGKDD 
Intern. Conf. Knowledge Discovery and Data Mining, Proc., 2019, pp. 2680–2688, available at: https://
dl.acm.org/doi/10.1145/3292500.3330762.

[3]	 Woo W., Wong W., Operational Application of Optical Flow Techniques to Radar-Based Rainfall 
Nowcasting, Atmosphere, 2017, Vol. 8(3), 48, 20 p., DOI: 10.3390/atmos8030048.

[4]	 Xingjian S. H. I., Chen Z., Wang H., Yeung D. Y., Wong W. K., Woo W. C., Convolutional LSTM Network: 
A Machine Learning Approach for Precipitation Nowcasting, Advances in Neural Information Processing 
Systems, 2015, Vol. 28, pp. 802–810, available at: https://papers.nips.cc/paper/2015/file/07563a3fe3bbe7
e3ba84431ad9d055af-Paper.pdf.

[5]	 Sirch T., Bugliaro L., Zinner T., Möhrlein M., Vazquez-Navarro M., Cloud and DNI nowcasting with 
MSG/SEVIRI for the optimized operation of concentrating solar power plants, Atmospheric Measurement 
Techniques, 2017, Vol. 10(2), pp. 409–429, available at: https://amt.copernicus.org/articles/10/409/2017/
amt-10-409-2017.pdf.

[6]	 Liu Y., Xi D. G., Li Z. L., Hong Y., A new methodology for pixel-quantitative precipitation nowcasting us-
ing a pyramid Lucas Kanade optical flow approach, J. Hydrology, 2015, Vol. 529, pp. 354–364.

[7]	 Simonenko E. V., Chudin A. O., Davidenko A. N., The differential method for calculation of cloud motion 
vectors, Russian Meteorology and Hydrology, 2017, Vol. 42(3), pp. 159–167.

[8]	 Zhang W., Han L., Sun J., Guo H., Dai J., Application of multi-channel 3D-cube successive convolution 
network for convective storm nowcasting, IEEE Intern. Conf. Big Data (BigData), 2019, pp. 1705–1710.

[9]	 Akbari Asanjan A., Yang T., Hsu K., Sorooshian S., Lin J., Peng Q., Short‐Term Precipitation Forecast 
Based on the PERSIANN System and LSTM Recurrent Neural Networks, J. Geophysical Research: 
Atmospheres, 2018, Vol. 123(22), pp. 12543–12563.

[10]	Sato R., Kashima H., Yamamoto T., Short-term precipitation prediction with skip-connected PredNet, 
Intern. Conf. Artificial Neural Networks, Proc., 2018, pp. 373–382.

[11]	 Lotter W., Kreiman G., Cox D., Deep Predictive Coding Networks for Video Prediction and Unsupervised 
Learning, arXiv print arXiv:1605.08104, 2016, 18 p., available at: https://arxiv.org/pdf/1605.08104.pdf.

[12]	Alekseeva A. A., Bukharov M. V., Diagnosis of Precipitation and Thunderstorms from Measurements 
of Outgoing Heat Radiation of a Cloud Cover from Geostationary Satellites, Russian Meteorology and 
Hydrology, 2005, Vol. 6, pp. 20–26.

[13]	 Mirza M., Osindero S., Conditional Generative Adversarial Nets, arXiv preprint arXiv:1411.1784, 2014, 
7 p., available at: https://arxiv.org/pdf/1411.1784.pdf.

[14]	Sorokin A. A., Makogonov S. I., Korolev S. P., The Information Infrastructure for Collective Scientific 
Work in the Far East of Russia, Scientific and Technical Information Proc., 2017, Vol. 4, pp. 302–304.


