Radar Remote Sensing of Exposed Intertidal Flats

Synthetic Aperture Radar Data Help Improving Sediment Classification on the German North Sea Coast

ГАДЕ, Мартин Хорстович (aka Martin Gade)
Institut für Meereskunde, Universität Hamburg, Германия
Outline

• Background & Basics
• Initial Studies
• DeMarine-U
• Field Campaigns
• Recent SAR Data Analyses
• Summary
Background & Basics

Wesselburener Watt; from Tanck (1998)
Background & Basics

Intertidal Flats

- Distance of about 10 km offshore
- German and Dutch North Sea coast, S Korean coast
- Fall dry once during each tidal cycle
- Usually non-vegetated
- Consist of fine sediments (sand, mud)
- Impacted by the stress of a changing world (e.g. sea level rise)

Surveillance

- Important because of high morpho-dynamics
- Regulated through national and international laws
- Difficult task by boat, foot, or land vehicles

Optical Remote Sensing

- Promising classification results, but
- strong dependence on cloud cover
Background & Basics (2)

ENVISAT ASAR WS
24 Dec 2007, 0948 UTC
Wind 6 m/s, W
Low tide: 0420 @ Norderney
Background & Basics

ENVISAT ASAR WS
15 Jan 2008, 0957 UTC
Wind 5-8 m/s, SW
Low tide: 0901 @ Norderney
1210 @ Cuxhaven
1235 @ Husum
Background & Basics (4)

ENVISAT ASAR WS

28 Jan 2008, 0948 UTC

Wind 4 m/s, W

Low tide: 0820 @ Norderney
1132 @ Cuxhaven
1202 @ Husum
Background & Basics (5)

ENVISAT ASAR WS
13 Feb 2008, 0946 UTC
Wind 4 m/s, W
Low tide: 0839 @ Norderney
1148 @ Cuxhaven
1216 @ Husum
Background & Basics (6)

Penetration Depth of Microwaves into Water

Radar Bands

- L 1.0 GHz 30 cm
- C 5.3 GHz 6 cm
- X 9.8 GHz 3 cm

[Swift, 1980]
Background & Basics

Surface depends on sediment types and water level ...
Background & Basics (8)

... and sometimes on other things ...

[Image of intertidal flats and mudflats]
Existing Classification System

Data basis: optical RS data (SPOT-4)

Legend
- Sand
- Sand-Mix
- Mix
- Dense Vegetation
- Dense Mud
- Mud-Dry
- Vegetation
- Mussel/Oyster Beds
- Bright Dry Sands

Data Source: SPOT-4. © SPOT Image 2006
Data Processing: Brockmann Consult © 2008
Project: DeMarine TP-4

Strong dependence on cloud cover and daytime → only very few scenes per year!
Initial Studies

[STS-59, April 1994]

[STS-68, October 1994]
Initial Studies (1)

Radar Imaging of Dry-Fallen Intertidal Flats During SIR-C/X-SAR (1994)

Gade: SAR Data for Classification of Intertidal Flats
Initial Studies (2)

Different radar signatures at the three SIR-C/X-SAR bands

10 April 1994, 0804 UTC, 2h45' after low tide

(12 km x 12 km)
Initial Studies (3)

Integral Equation Model (IEM; Fung et al. [1992])

\[
\sigma_{pp}^{\mu} = \frac{k^2}{2} \exp(-2k_z^2\sigma^2) \sum_{n=1}^{\infty} I_{pp}^n \frac{W^{(n)}(-2k_x,0)}{n!}
\]

where \(k_z = k \cos \theta \), \(k_x = k \sin \theta \) and

\[
I_{pp}^n = (2k_z \sigma)^n f_{pp} \exp(-k_z^2 \sigma^2) + \frac{(k_z \sigma)^n}{2} \left[F_{pp}(-k_x,0) + F_{pp}(k_x,0) \right]
\]

Backscattering of electromagnetic waves from a dielectric surface with random roughness modulation

Limiting cases: Bragg model and Kirchhoff model

Special form of surface autocorrelation function important
Initial Studies (4)

Integral Equation Model (IEM; Fung et al. [1992])

NRCS isolines as function of correlation length and rms height

Gaussian autocorrelation of surface elevation
Initial Studies (5)

Deriving Maps of RMS Height and Correlation Length

Example: NRCS (pixel) values at VV polarisation:
- L band: -18 dB
- C band: -9 dB
- X band: -11 dB

Derived roughness parameters:
- rms height: 3.1 mm
- corr. length: 3.7 cm
Initial Studies (6)

Sediment Map Derived Using SIR-C/X-SAR Data (50 m geometrical resolution)

Dependence of sediment type and micro particles after Pröber [1981]

Source: National Park Agency
DeMarine-U (1)

German Contribution to GMES

DeCOVER, DeMARINE, DeSECURE

DeMarine-U (Environment), Task 4: "Integration of optical and SAR Earth RS Data into the Monitoring of Intertidal Flats"

Brockmann Consult, UHH, National Park Agencies (Schleswig Holstein, Niedersachsen)

Tasks of UHH:
Investigate dependence of SAR signatures on imaging and environmental parameters

Extension of IEM inversion process for the use of SAR data from multiple satellites
DeMarine-U (2)

Test Sites
DeMarine-U (3)

Use of SAR Data from Various Satellites

Can our approach be used also for multi-satellite SAR imagery?

Different

- Incidence angle
- Azimuth angle
- Platforms
- Polarizations
- Environ. conditions
Field Campaigins (1)

Field Campaign During ERS Overpass 1998

ERS SAR Image (3 km × 2.5 km)
(4 April 1998, 1045 UTC)
Field Campaigns (2)

DeMarine-U Field Campaign April 2008

Aim: to record all parameters that are important for the interpretation of satellite data

• Slope/inclination
• Surface structure
• Colour
• Sediment
• Surface layers
• Redox conditions
• Micro-, Macroalgae
• Macrophytes -fauna
• Weather conditions
• Station info

German Wadden Sea, Norderney Riffgatt, 14 April 2008
Field Campaigns

DeMarine-TP4 April/August 2008

TerraSAR-X Scene, 30 August 2008, 1710 UTC (34 min. after low tide)
Recent Satellite Data Analyses

ALOS PALSAR
18 Oct 2007,
Wind 10-12 m/s,
Low tide: 1031 @ Husum

ENVISAT ASAR
18 Oct 2007, 0955 UTC,
Wind 10-12 m/s, N

PALSAR ASAR Diff(P-A)
Recent Satellite Data Analyses (2)

ALOS PALSAR
18 Oct 2007, 1023 UTC
Wind 10-12 m/s, N
Low tide: 1031 @ Husum

PALSAR ASAR Diff(P-A)

ENVISAT ASAR
18 Oct 2007, 0955 UTC
Wind 10-12 m/s, N
Low tide: 1031 @ Husum
Recent Satellite Data Analyses

ALOS PALSAR
12 Apr 2008, 2143 UTC
Wind 3-4 m/s, W
Low tide: 2120 @ Norderney

PALSAR ASAR Diff(P-A)

ENVISAT ASAR
13 Apr 2008, 1001 UTC
Wind 4-5 m/s, W
Low tide: 0935 @ Norderney
Recent Satellite Data Analyses (4)

- **ALOS PALSAR**
 - 12 Apr 2008, 2143 UTC
 - Wind 3-4 m/s, W
 - Low tide: 2120 @ Norderney

- **PALSAR ASAR Diff(P-A)**

- **ENVISAT ASAR**
 - 13 Apr 2008, 1001 UTC
 - Wind 4-5 m/s, W
 - Low tide: 0935 @ Norderney
Recent Satellite Data Analyses

ALOS PALSAR
- 12 April 2008, 21:43 UTC
- Wind 7-8 m/s (SSW), LT 21:20 UTC

ENVISAT ASAR
- 13 April 2008, 10:01 UTC
- Wind 5-6 m/s (SW), LT 09:35 UTC
Recent Satellite Data Analyses

ALOS PALSAR
12 April 2008, 21:43 UTC
Wind 7-8 m/s (SSW), LT 21:20 UTC

ENVISAT ASAR
27 July 2008, 10:01 UTC
Wind 2-3 m/s (SW), LT 11:21 UTC
Recent Satellite Data Analyses

ALOS PALSAR
12 April 2008, 21:43 UTC
Wind 7-8 m/s (SSW), LT 21:20 UTC

TerraSAR-X
21 July 2009, 17:01 UTC
Wind 3 m/s (E), LT 15:58 UTC
Recent Satellite Data Analyses (8)

TerraSAR-X
03 May 2008, 0550 UTC
Wind 3-4 m/s
Low tide: 0508 @ Husum
Recent Satellite Data Analyses

Multi-temporal analyses: Indicators for mussel beds

Data: Four TerraSAR-X Scenes of 2009 (1h before/after low tide)

Green: high mean NRSC / low NRCS std dev
White: high mean NRCS / high NRCS std dev
Summary

AND THE MESSAGE? HOW ABOUT THE MESSAGE... EY?!
Summary

Use of multi-frequency satellite SAR data to derive surface roughness parameters of intertidal flats

Inversion of Integral Equation Model, based on previous studies (1994/1998)

DeMarine-U:
Improved classification system for Wadden Sea surfaces types based on optical RS data
Include multi-frequency satellite SAR data: derive surface roughness parameters of intertidal flats through inversion of Integral Equation Model using multi-satellite SAR data
Multi-temporal SAR data: detection of mussel/oyster beds
Благодарю за внимание!