The Derivation of Current Fields from Multi-Sensor Satellite Data

Challenges, approaches and validations for the current derivation from multi-sensor imagery

Joint Workshop in Tarusa 02/2012
Benjamin Seppke
Outline

- Introduction
- Solving the correspondence problem
- Application to satellite images
- Conclusions and future work
Outline

• Introduction
 – The task
 – Constraints, challenges and problems
 – Motivation

• Solving the correspondence problem
• Application to satellite images
• Conclusions and future work
The Task

- Brief description
 Derive / compute the sea surface currents from at least two satellite images

- Basic Assumption
 There are some „scene objects“ in the images, whose motion is caused only by the local sea surface current, e.g.:
 - Algae- or other surface films
 - Ice floe
Image Constraints

- The spectral domains of the images can be quite different, e.g.:
 - infrared
 - multispectral or even hyperspectral
 - microwave (active / passive)
- Additionally, the spatial domain of the images is never equal
- Hard to find images with big spatial overlap and small temporal distance
Some Challenges

- Different types of sensors:
 - Specific noise
 - Different properties are imaged
- Atmospheric interference and distortion
- Low sampled time axis:
 - Mainly just two images
 - Big temporal distances
- The aperture problem
The Aperture Problem

- Even if an object was sampled “optimally” at both images, it may be impossible to calculate a displacement vector only based on local information.
Optical Flow vs. “Real Motion”

Show movies…
Motivation

- Currently, there is research interest for high-resolution surface current **measurements**, e.g.:
 - Validate or refine climate or oceanographic **models**
 - Improve accuracy of the measurement of ice drift or biological development e.g. of algae blooms
 - General enhancement of predictions
- Further advantages:
 - Satellite images are relatively cheap compared to other methods
 - Allow the highest resolution current fields
 - Greatest possible amount of **measurements** overall
Other Methods of Current Derivation

- Buoys or other in-situ measurements
- Climate or oceanographic models
- SAR-Techniques
 - Along-Track Interferometry
 - Doppler-Centroid Analysis
- HF-Radar arrays
HF-Radar
Table of Contents

• Introduction
• Solving the correspondence problem
 – Feature based approaches
 – Gradient based approaches
 – Problems and improvements
• Application to satellite images
• Conclusions and future work
The Feature Based Approach

1. Step: Find the features
 - There are many possible operators like e.g. the Monotony and Moravec operator [MORAVEC 1977]
 - Wavelet based approaches [LIU ZHAO HSU 2006]
 - Model based approaches like Snakes [OETJENS 1997], [WENDKER 1997]

2. Step: Calculate the similarity between the features
 - General pattern matching problem, Solution via (normalised) cross-correlation, shape context algorithm or other metrics

3. Step: Determination of correspondences
 - Maximum likelihood decider
 - Smooth vector-field decider
 - Relaxation [KITCHEN ROSENFELD 1979], [BARNARD THOMPSON 1981]
The Gradient Based Approach

- Basic assumption [HORN SCHUNK 1981]:
 - Flat surfaces (Intensity of objects does not change at movement)
- Let I(x,y,t) be the intensity of a pixel (x,y) at time t
 - \(\frac{dI}{dt} = 0 \), and using the chain rule: \(\frac{\partial I}{\partial x} \frac{dx}{dt} + \frac{\partial I}{\partial y} \frac{dy}{dt} + \frac{\partial I}{\partial t} = 0 \)
 - Substitution of \(u = \frac{dx}{dt} \), \(v = \frac{dy}{dt} \) results in a linear system of equations:
 \[I_x \cdot u + I_y \cdot v + I_t = 0 \]
 where \(I_x, I_y \) and \(I_t \) are the partial derivatives of the intensity function.
 - Problem: One equation for two unknowns \(u \) and \(v \)!
Constraints for Gradient Based Methods

- Global constraints
 - Example: Horn & Schunk: Smoothness of movement
 - Minimization of the quadratic gradient magnitude of the flow velocity:
 \[
 \left(\frac{\partial u}{\partial x} \right)^2 + \left(\frac{\partial u}{\partial y} \right)^2 \quad \text{and} \quad \left(\frac{\partial v}{\partial x} \right)^2 + \left(\frac{\partial v}{\partial y} \right)^2
 \]

- Local constraints
 - Assume local equality of the motion
 - Example: Lucas Kanade method:
 \[
 \begin{bmatrix}
 \sum_\sigma (I_x)^2 & \sum_\sigma I_x I_y \\
 \sum_\sigma I_y I_x & \sum_\sigma (I_y)^2
 \end{bmatrix}
 \begin{bmatrix} u \\ v \end{bmatrix} =
 \begin{bmatrix}
 \sum_\sigma I_x \\
 \sum_\sigma I_y
 \end{bmatrix} \cdot I_t
 \]

- Hybrid approaches
 - Combining local and global constraints
 - Example: Bruhn et. al
Detail of Analysed Algorithms

Motion detection algorithms

- Feature based
 - Monotony op.
 - Canny
 - Image features
 - Edge features
 - Fast CC matching
 - Fast NCC matching
 - Max likelihood
 - Smoothness
 - Relaxation

- Gradient based
 - Local constraints
 - Lucas Kanade
 - Structure Tensor
 - Constant Contrast
 - Farnebäck
 - Global constraints
 - Horn & Schunck
 - Horn & Schunk ex.
 - Nagel & Enkelmann
 - Hybrid algorithms
 - Combined Local Global
 - Combined Local Global non-linear
Problems of Each Approach

- **Gradient based**
 - Calculation for the whole image
 - No explicit quality index for the vectors
 - Poor quality if constraints are violated, e.g. flexible objects, change of illumination or at big spatio-temporal distances
 - Do not have to select and adjust special feature detectors
 - No final determination of correspondences needed

- **Feature based**
 - Calculation only for the features of interest
 - The quality of each vector is explicitly given
 - Less problems at changes in illumination, big spatio-temporal distances and a time axis containing just two images
 - Difficult selection of feature detectors depending on task
 - Difficult final determination of correspondences
Improvements

- Accuracy of gradient based approaches
 - Extended original Horn & Schunck algorithm
 - Moved from Lucas Kanade algorithm to Structure Tensor approach
 - Embedded state-of-the art algorithms
 - Hybrid Models / non-linear approaches
- Speed of the feature matching
- Split motion detection
 - A global motion / non-global motion part
 - Hierarchically
The Fast Normalized Cross-Correlation [LEWIS 1995]

- Given the mask-image t and the image to correlate with f, the normalized cross-correlation can be described by:

\[
\gamma(u,v) = \frac{\sum_{x,y} (f(x,y) - \bar{f}_{u,v})(t(x-u,y-v) - \bar{t})}{\sqrt{\sum_{x,y} (f(x,y) - \bar{f}_{u,v})^2 \cdot \sum_{x,y} (t(x-u,y-v) - \bar{t})^2}}
\]

- Improve speed by using the Fast Fourier Transform (FFT)

\[
FT^{-1}(FT(f') \cdot \text{conj}(FT(t')))
\]

- Re-use the constant right part of the nominator

\[
\sqrt{\sum_{x,y} (t(x-u,y-v) - \bar{t})^2}
\]

- Improve speed by calculating sum-tables for the non-constant right part of the nominator

\[
\sqrt{n \cdot \sum_{x,y} f(x,y)^2 - \left(\sum_{x,y} f(x,y)\right)^2}
\]

Sum of squares Squared sum
Global Motion Estimation: Rotation

- Assumption: The motion can be split into two parts:
 - A global rotation and translation and
 - A non-global part, that describes the individual motion

- Calculation
 - Determine the rotation between the images by means of FFT
Global Motion Estimation: Translation

- Calculation
 - Determine the rotation between the images at the Fourier Space (in polar coordinates)
 - Correct the rotation of the second image
 - Perform a (unnormalized) cross correlation using FFT
Outline

- Introduction
- Solving the correspondence problem
- Application to satellite images
 - Multi-Sensor application (Landsat TM & SAR)
 - Single-Sensor application
 - SeaWiFS images
 - SAR images
- Conclusions and future work
Multi-Sensor Data: Overview

Image 1
- Landsat TM
- 08:57 UTC

Image 2
- ERS-2 SAR
- 09:47 UTC

Region of interest
Multi-Sensor Data: The Images

- ROI of Landsat TM
 - 15.07.1998
 - 08:57 UTC

- Inverted ROI of ERS-2 SAR
 - 15.07.1998
 - 09:47 UTC

Surface films
Multi-Sensor Data: Motion Derivation

Entering interactive demonstration...
Single-Sensor WiFS: Overview

- **Image 1**
 - SeaStar SeaWiFS
 - 1.08.1999
 - 11:03 UTC

- **Image 2**
 - SeaStar SeaWiFS
 - 2.08.1999
 - 11:47 UTC

Region of interest
Single-Sensor WiFS: The Images

• ROI of image 1
 01.08.1999 / 11:03 UTC

• ROI of image 2
 02.08.1999 / 11:47 UTC
Single-Sensor WiFS: Motion Derivation

Entering interactive demonstration...
Single-Sensor SAR: Overview

- Image 1
 - ENVISAT ASAR
 - 15.05.2005
 - 09:00 UTC
- Image 2
 - ENVISAT ASAR
 - 15.05.2005
 - 20:25 UTC
Single-Sensor SAR: The Images

- **ROI of Image 1**
 - 15.05.2005 / 09:00 UTC

- **ROI of Image 2**
 - 15.05.2005 / 20:25 UTC

Oil spills
Single-Sensor SAR: Motion Derivation

Entering interactive demonstration...
Outline

- Introduction
- Solving the correspondence problem
- Application to satellite images
- Conclusions and future work
Conclusions I

- In many cases, we get promising results!
- Different sensors
 - Spectral sensors
 - SAR
- Different kinds of tracked objects
 - Algae films
 - Oil spills
- The results refine the model currents on a mesoscale
Conclusions II

- Algorithmic improvements lead to speed or accuracy improvements (or both)
- If applicable, gradient based approaches result in high resolution current fields
- However, in some cases we currently have to “fall back” to fast normalized cross-correlation
- Hard to get satellite images that:
 - show “objects of interest” and
 - have a spatiotemporal overlap.
- Ground-truth or gold-standard?
Future work I

- Improve current low-level image processing
 - Make algorithms more robust
 - Self detection of failures
 - Implement and test other algorithms
- Use the spectral information of multi-spectral images
 - Move from single band image ↔ single band image processing to multi-band processing
 - Use multi-spectral information for feature detection
 - Multi-sensor multi-sensor fusion
- Further development of GRAIPE
Future work II

- Use more high-level knowledge
 - Improve the results (e.g. filtering unreliable currents)
 - Perform reasoning on images and currents
 - Explicit representation of different domains

- Where could high-level knowledge support us?
 - Automatic learning of feature detectors
 - Designing optimized gradient based algorithms for sea surface currents
 - Interpretation of the calculated currents

- Extend to different areas
End of presentation

Thank you for your attention!
Literature I

- [BARNARD THOMPSON 1981]
 Thompson, W. B. and Barnard, S. T.
 Lower-Level Estimation and Interpretation of Visual Motion.

- [FIEDLER 2003]
 Fiedler, Gerald
 Untersuchungen zur Bestimmung zweidimensionaler Strömungsfelder an der Meeresoberfläche mit Hilfe von multispektralen Satellitenbildern
 Diplomarbeit im AB KOGS, Informatik, Uni Hamburg, 2003

- [FOUCHER BÉNIÉ BOUCHER 1998]
 Foucher, S., Bénié G. B., Boucher, J.-M.
 WAVELET FILTERING OF SAR IMAGES BASED ON NON GAUSSIAN ASSUMPTIONS

- [FROST STILES SHANMUGAN HOLTZMAN 1982]
 Frost, V. S., Stiles, J. A., Shanmugan, K. S; and Holtzman, J. C.
 A model for radar images and its application to adaptive digital filtering of multiplicative noise

- [GAGNON 1999]
 Gagnon, Langis
 Wavelet Filtering of Speckle Noise - Some Numerical Results
Literature II

- [HORN SCHUNK 1981]
 Horn, Berthold K. P. and Schunk Brian G.
 Determining Optical Flow
 Artificial Intelligence 17 p. 185-203, 1981

- [KITCHEN ROSENFELD 1979]
 Kitchen, L. and Rosenfeld, A.
 Discrete relaxation for matching relational structures

- [LIU ZHAO HSU 2006]
 Liu, A. K., Zhao, Y. and Hsu, M.-K.
 Ocean Surface Drift revealed by Synthetic Aperture Radar Images
 EOS, Volume 87, 13 June 2006 p. 233-239

- [MORAVEC 1977]
 Moravec, Hans P.
 Towards Automatic Visual Obstacle Avoidance
 Proc. Int. Joint Conf. on AI. IJCAI-1997, p. 584

- [NIEMEYER 2000]
 Niemeyer, Irmgard
 Änderungsdetektion und objektorientierte, wissensbasierte Klassifikation von Multispektralaufnahmen zur Unterstützung der nuklearen Verifikation
 Dissertation, Rheinische Friedrich-Wilhelms-Universität Bonn, 2000
Literature III

- [OETJENS 1997]
 Ötjens, Christoph
 Geometrische Entzerrung von Luftbildaufnahmen eines Multispektralscanners unter Verwendung von Paßkonturen

- [SCHOLZ 2001]
 Scholz, Jochen
 Grundlagen der digitalen Verarbeitung von Synthetic-Aperture-Radar-Aufnahmen am Beispiel der automatischen Erkennung mariner Ölverschmutzung
 Diplomarbeit im AB KOGS, Informatik, Uni Hamburg, 2001

- [WENDKER 1997]
 Wendker, Andreas
 Geometrische Verarbeitung und Entzerrung von Luftbildaufnahmen eines Multispektralscanners,