The Derivation of Current Fields from Multi-Sensor Satellite Data

Challenges, approaches and validations for the current derivation from multi-sensor imagery

Joint Workshop in Tarusa 02/2012 Benjamin Seppke

Outline

- Introduction
- Solving the correspondence problem
- Application to satellite images
- Conclusions and future work

Outline

- Introduction
 - The task
 - Constraints, challenges and problems
 - Motivation
- Solving the correspondence problem
- Application to satellite images
- Conclusions and future work

The Task

- Brief description
 Derive / compute the sea surface currents from at least two satellite images
- Basic Assumption There are some ,,scene objects" in the images, whose motion is caused only by the local sea surface current, e.g.:
 - Algae- or other surface films
 - Ice floe

Image Constraints

- The spectral domains of the images can be quite different, e.g.:
 - infrared
 - multispectral or even hyperspectral
 - microwave (active / passive)
- Additionally, the spatial domain of the images is never equal
- Hard to find images with big spatial overlap and small temporal distance

Some Challenges

- Different types of sensors:
 - Specific noise
 - Different properties are imaged
- Atmospheric interference and distortion
- Low sampled time axis:
 - Mainly just two images
 - Big temporal distances
- The aperture problem

The Aperture Problem

• Even if an object was sampled "optimally" at both images, it may be impossible to calculate a displacement vector only based on local information.

Optical Flow vs. "Real Motion"

Show movies...

Motivation

- Currently, there is research interest for high-resolution surface current **measurements**, e.g.:
 - Validate or refine climate or oceanographic *models*
 - Improve accuracy of the measurement of ice drift or biological development e.g. of algae blooms
 - General enhancement of predictions
- Further advantages:
 - Satellite images are relatively cheap compared to other methods
 - Allow the highest resolution current fields
 - Greatest possible amount of **measurements** overall

Other Methods of Current Derivation

- Buoys or other in-situ measurements
- Climate or oceanographic models
- SAR-Techniques
 - Along-Track Interferometry
 - Doppler-Centroid Analysis
- HF-Radar arrays

1.0

Table of Contents

- Introduction
- Solving the correspondence problem
 - Feature based approaches
 - Gradient based approaches
 - Problems and improvements
- Application to satellite images
- Conclusions and future work

The Feature Based Approach

1. Step: Find the features

- There are many possible operators like e.g. the Monotony and Moravec operator [MORAVEC 1977]
- Wavelet based approaches [LIU ZHAO HSU 2006]
- Model based approaches like Snakes [OETJENS 1997], [WENDKER 1997]
- 2. Step: Calculate the similarity between the features
 - General pattern matching problem, Solution via (normalised) cross-correlation, shape context algorithm or other metrics
- 3. Step: Determination of correspondences
 - Maximum likelihood decider
 - Smooth vector-field decider
 - → Relaxation [KITCHEN ROSENFELD 1979], [BARNARD THOMPSON 1981]

The Gradient Based Approach

- Basic assumption [HORN SCHUNK 1981]:
 - Flat surfaces (Intensity of objects does not change at movement)
- Let I(x,y,t) be the intensity of a pixel (x,y) at time t
 - $-\frac{dI}{dt} = 0$, and using the chain rule: $\frac{\partial I}{\partial x} \cdot \frac{dx}{dt} + \frac{\partial I}{\partial y} \cdot \frac{dy}{dt} + \frac{\partial I}{\partial t} = 0$
 - Substitution of $u = \frac{dx}{dt}$, $v = \frac{dy}{dt}$ results in a linear system of equations:

 $I_x \cdot u + I_y \cdot v + I_t = 0$

where I_x , I_y and I_t are the partial derivatives of the intensity function.

- Problem: One equation for two unknowns u and v!

Constraints for Gradient Based Methods

- Global constraints
 - Example: Horn & Schunk: Smoothness of movement
 - Minimization of the quadratic gradient magnitude of the flow velocity:

$$\left(\frac{\partial u}{\partial x}\right)^2 + \left(\frac{\partial u}{\partial y}\right)^2$$
 and $\left(\frac{\partial v}{\partial x}\right)^2 + \left(\frac{\partial v}{\partial y}\right)^2$

- Local constraints
 - Assume local equality of the motion
 - Example: Lucas Kanade method: $\begin{bmatrix} \sum_{\sigma} (I_x)^2 & \sum_{\sigma} I_x \cdot I_y \\ \sum_{\sigma} I_y \cdot I_x & \sum_{\sigma} (I_y)^2 \end{bmatrix} \cdot \begin{bmatrix} u \\ v \end{bmatrix} = -\begin{bmatrix} \sum_{\sigma} I_x \\ \sum_{\sigma} I_y \end{bmatrix} \cdot I_t$
- Hybrid approaches
 - Combining local and global constraints
 - Example: Bruhn et. al

Detail of Analysed Algorithms

Problems of Each Approach

- Gradient based
 - Calculation for the whole image
 - No explicit quality index for the vectors
 - Poor quality if constraints are violated, e.g. flexible objects, change of illumination or at big spatio-temporal distances
 - Do not have to select and adjust special feature detectors
 - No final determination of correspondences needed

- Feature based
 - Calculation only for the features of interest
 - The quality of each vector is explicitly given
 - Less problems at changes in illumination, big spatiotemporal distances and a time axis containing just two images
 - Difficult selection of feature detectors depending on task
 - Difficult final determination of correspondences

Improvements

- Accuracy of gradient based approaches
 - Extended original Horn & Schunck algorithm
 - Moved from Lucas Kanade algorithm to Structure Tensor approach
 - Embedded state-of-the art algorithms
 - Hybrid Models / non-linear approaches
- Speed of the feature matching
- Split motion detection
 - A global motion / non-global motion part
 - Hierarchically

The Fast Normalized Cross-Correlation [LEWIS 1995]

• Given the mask-image t and the image to correlate with f, the normalized cross-correlation can be described by:

 $\gamma(u,v) = \frac{\sum_{x,y} (f(x,y) - \bar{f}_{u,v})(t(x-u,y-v) - \bar{t})}{\sqrt{\sum_{x,y} (f(x,y) - \bar{f}_{u,v})^2} \cdot \sum_{x,y} (t(x-u,y-v) - \bar{t})^2}}$

• Improve speed by using the Fast Fourier Transform (FFT)

 $FT^{-1}(FT(f') \cdot conj(FT(t')))$

• Re-use the constant right part of the nominator

 $\sqrt{\sum_{x,y} (t(x-u, y-v)-\overline{t})^2}$

• Improve speed by calculating sum-tables for the non-constant right part of the nominator

Squared sum

$$\sqrt{n \cdot \sum_{x, y} f(x, y)^2 - \left(\sum_{x, y} f(x, y)\right)^2}$$

Sum of squares

Global Motion Estimation: Rotation

- Assumption: The motion can be split into two parts:
 - A global rotation and translation and
 - A non-global part, that describes the individual motion
- Calculation
 - Determine the rotation between the images by means of FFT

Global Motion Estimation: Translation

- Calculation
 - Determine the rotation between the images at the Fourier Space (in polar coordinates)
 - Correct the rotation of the second image
 - Perform a (unnormalized) cross correlation using FFT

Outline

- Introduction
- Solving the correspondence problem
- Application to satellite images
 - Multi-Sensor application (Landsat TM & SAR)
 - Single-Sensor application
 - SeaWiFS images
 - SAR images
- Conclusions and future work

Multi-Sensor Data: Overview

Multi-Sensor Data: The Images

- ROI of Landsat TM
 - 15.07.1998
 - 08:57 UTC

- Inverted ROI of ERS-2 SAR
 - 15.07.1998
 - 09:47 UTC

Surface films

Multi-Sensor Data: Motion Derivation

Entering interactive demonstration...

Single-Sensor WiFS: Overview

- Image 1 Image 2
 - SeaStar SeaWiFS

• SeaStar SeaWiFS

1.08.1999

• 2.08.1999

Single-Sensor WiFS: The Images

- ROI of image 1 01.08.1999 / 11:03 UTC

ROI of image 2
 02.08.1999 / 11:47 UTC

Single-Sensor WiFS: Motion Derivation

Entering interactive demonstration...

Single-Sensor SAR: Overview

- Image 1
 - ENVISAT ASAR
 - 15.05.2005
 - 09:00 UTC
- Image 2
 - ENVISAT ASAR
 - 15.05.2005
 - 20:25 UTC

Single-Sensor SAR: The Images

• ROI of Image 1

- 15.05.2005 / 09:00 UTC

• ROI of Image 2

Single-Sensor SAR: Motion Derivation

Entering interactive demonstration...

Outline

- Introduction
- Solving the correspondence problem
- Application to satellite images
- Conclusions and future work

Conclusions I

- In many cases, we get promising results!
- Different sensors
 - Spectral sensors
 - SAR
- Different kinds of tracked objects
 - Algae films
 - Oil spills
- The results refine the model currents on a mesoscale

Conclusions II

- Algorithmic improvements lead to speed or accuracy improvements (or both)
- If applicable, gradient based approaches result in high resolution current fields
- However, in some cases we currently have to "fall back" to fast normalized cross-correlation
- Hard to get satellite images that:
 - show "objects of interest" and
 - have a spatiotemporal overlap.
- Ground-truth or gold-standard?

Future work I

- Improve current low-level image processing
 - Make algorithms more robust
 - Self detection of failures
 - Implement and test other algorithms
- Use the spectral information of multi-spectral images
 - Move from single band image ↔ single band image processing to multi-band processing
 - Use multi-spectral information for feature detection
 - Multi-sensor multi-sensor fusion
- Further development of GRAIPE

Future work II

- Use more high-level knowledge
 - Improve the results (e.g. filtering unreliable currents)
 - Perform reasoning on images and currents
 - Explicit representation of different domains
- Where could high-level knowledge support us?
 - Automatic learning of feature detectors
 - Designing optimized gradient based algorithms for sea surface currents
 - Interpretation of the calculated currents
- Extend to different areas

End of presentation

Thank you for your attention!

Literature I

- [BARNARD THOMPSON 1981] Thompson, W. B. and Barnard, S. T. *Lower-Level Estimation and Interpretation of Visual Motion*. Computer 14, 8 (Aug. 1981), 20-28.
- [FIEDLER 2003] Fiedler, Gerald Untersuchungen zur Bestimmung zweidimensionaler Strömungsfelder an der Meeresoberfläche mit Hilfe von multispektralen Satellitenbildern Diplomarbeit im AB KOGS, Informatik, Uni Hamburg, 2003
- [FOUCHER BÉNIÉ BOUCHER 1998]
 Foucher, S., Bénié G. B., Boucher, J.-M.
 WAVELET FILTERING OF SAR IMAGES BASED ON NON GAUSSIAN ASSUMPTIONS Proc. of ICASSP, 1998, p. 2925-2928
- [FROST STILES SHANMUGAN HOLTZMAN 1982] Frost, V. S., Stiles, J. A., Shanmugan, K. S: and Holtzman, J. C. *A model for radar images and its application to adaptive digital filtering of multiplicative noise* IEEE Transactions on Pattern Analysis and Machine Intelligence, 4, pp157-166, 1982.
 - [GAGNON 1999] Gagnon, Langis *Wavelet Filtering of Speckle Noise - Some Numerical Results* Proceedings of the Conference Vision Interface 1999, Trois-Rivières, 1999

•

Literature II

- [HORN SCHUNK 1981]
 Horn, Berthold K. P. and Schunk Brian G. Determining Optical Flow
 Artificial Intelligence 17 p. 185-203, 1981
- [KITCHEN ROSENFELD 1979] Kitchen, L. and Rosenfeld, A. Discrete relaxation for matching relational structures IEEE Trans. Syst. Man Cybern., p.869-874, Dec. 1979.
- [LIU ZHAO HSU 2006] Liu, A. K., Zhao, Y. and Hsu, M.-K. Ocean Surface Drift revealed by Synthetic Aperture Radar Images EOS, Volume 87, 13 June 2006 p. 233-239
- [MORAVEC 1977] Moravec, Hans P. *Towards Automatic Visual Obstacle Avoidance* Proc. Int. Joint Conf. on AI. IJCAI-1997, p. 584
- [NIEMEYER 2000] Niemeyer, Irmgard Änderungsdetektion und objektorientierte, wissensbasierte Klassifikation von Multispektralaufnahmen zur Unterstützung der nuklearen Verikation Dissertation, Rheinische Friedrich-Wilhelms-Universität Bonn, 2000

Literature III

- [OETJENS 1997]
 Ötjens, Christoph *Geometrische Entzerrung von Luftbildaufnahmen eines Multispektralscanners unter Verwendung von Paßkonturen* Diplomarbeit, September 1997, Universität Hamburg, II. Institut für Experimentalphysik, CENSIS-Report 28-97.
- [SCHOLZ 2001]

Scholz, Jochen Grundlagen der digitalen Verarbeitung von Synthetic-Aperture-Radar-Aufnahmen am Beispiel der automatischen Erkennung mariner Ölverschmutzung Diplomarbeit im AB KOGS, Informatik, Uni Hamburg, 2001

• [WENDKER 1997]

Wendker, Andreas

Geometrische Verarbeitung und Entzerrung von Luftbildaufnahmen eines Multispektralscanners, Diplomarbeit, Januar 1997, Universität Hamburg, II. Institut für Experimentalphysik, CENSIS-Report 26-97.