
Working with RadarSat-2 and TerraSAR-X High-Resolution Data

Requirements, Methods and Tools for the DTeddie Preprocessing Chain

Joint Workshop in Tarusa 02/2012 Benjamin Seppke

Outline

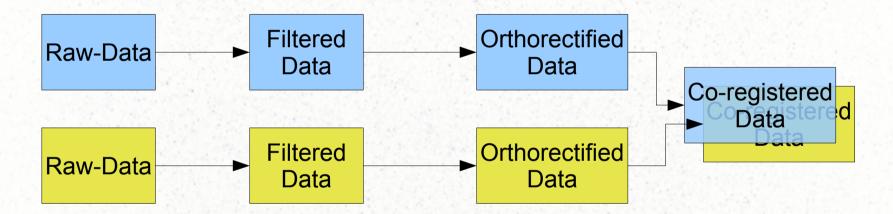
- Requirements of the DTeddie Project
- Data Acquisition
- Radiometric Calibration
- Geographic Calibration
- Discussion
- Outlook and Future Work

Outline

- Requirements of the DTeddie Project
- Data Acquisition
- Radiometric Calibration
- Geographic Calibration
- Discussion
- Outlook and Future Work

Aim of the DTeddie Project

Detecting and Tracking Small Scale Eddies in the Black Sea and the Baltic Sea Using High-Resolution Radarsat-2 and TerraSAR-X Imagery

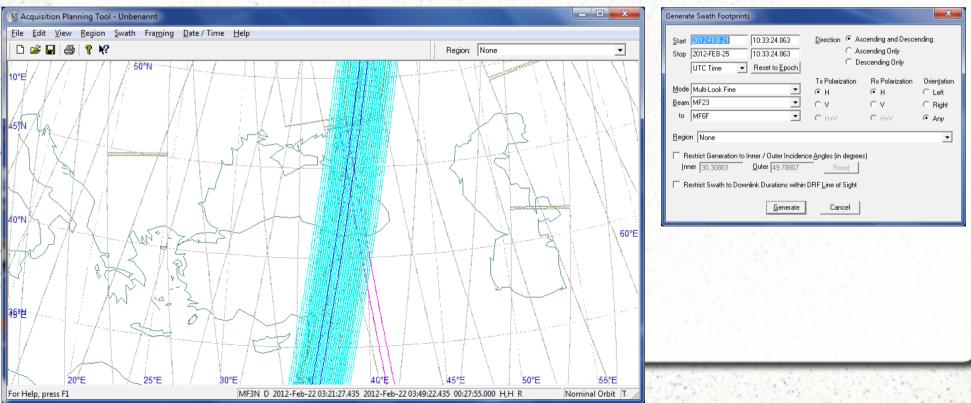


Requirements I

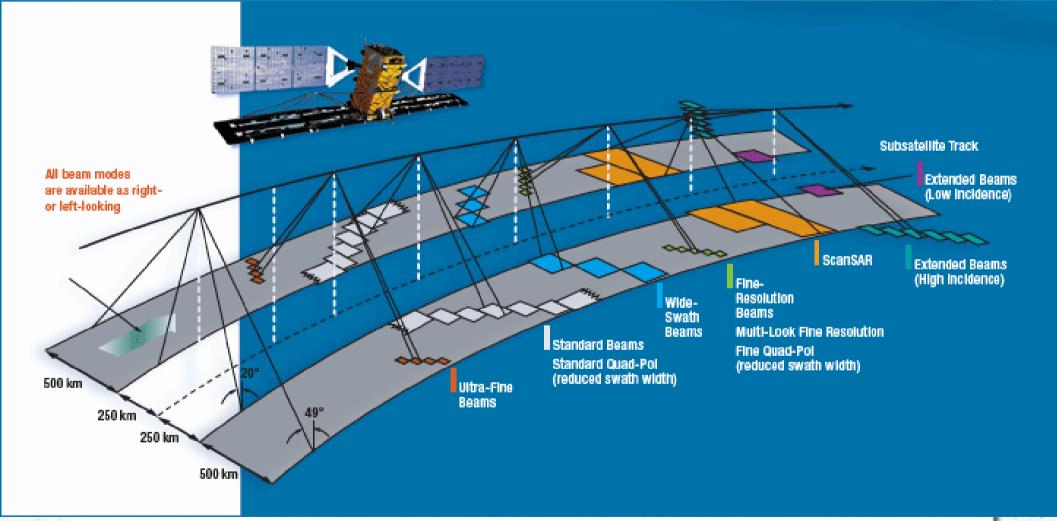
- High-resolution SAR data (1m 50m p. pixel)
- Spatio-temporal *near* images
- Visibility of trackable objects and eddy-like structures
- Ground Truth w.r.t. real measurements
- Good radiometric quality
- Best geographic quality

Requirements II

• Generic and independent preprocessing chain


- Motion estimation
- Validation and explanation of results by means of other (e.g. in-situ) measurements

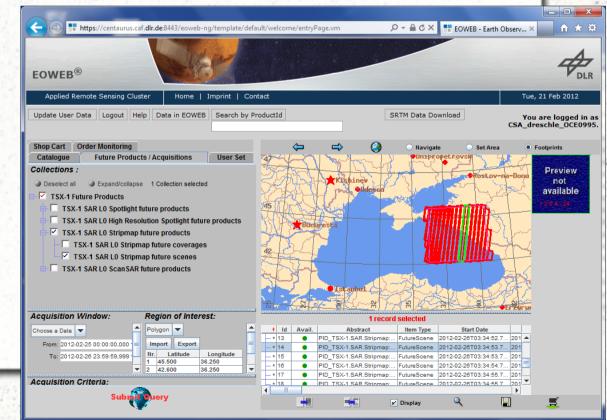
Outline


- Requirements of the DTeddie Project
- Data Acquisition
- Radiometric Calibration
- Geographic Calibration
- Discussion
- Outlook and Future Work

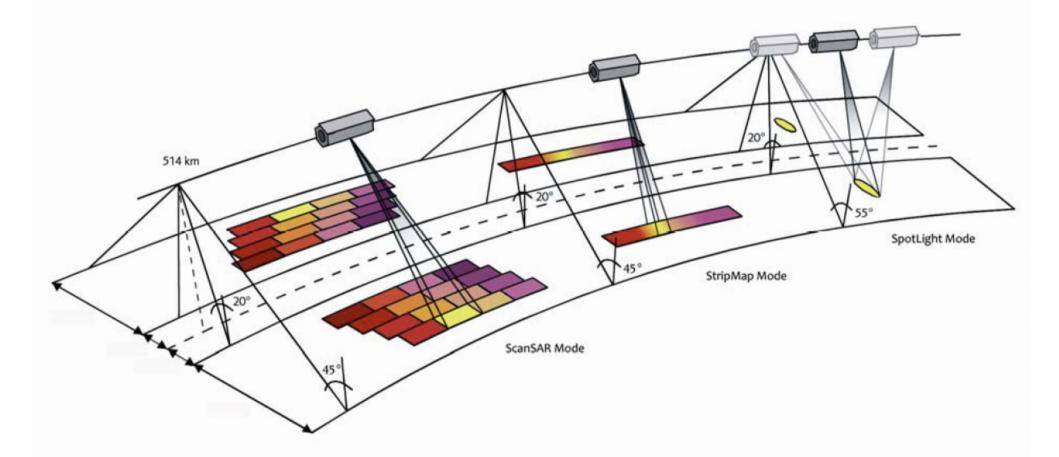
Data Acquisition: Radarsat-2

- MDA Acquisition Planning Tool (APT)
 - Windows only
 - Create and order via APT-files

Radarsat-2 Image Modes I


Data taken from CSA-brochure, ©2012 CSA

Radarsat-2 Image Modes II


BEAM MODE		APPROXIMATE INCIDENCE ANGLE	NOMINAL SWATH WIDTH	APPROXIMATE RESOLUTION ¹	NUMBER OF LOOKS
Selective Polarization transmission H or V receive H and/or V	Fine Standard Low Incidence High Incidence Wide ScanSAR Narrow ScanSAR Wide	37°- 49° 20°- 49° 10°- 23° 50°- 60° 20°- 45° 20°- 46° 20°- 49°	50 km 100 km 170 km 70 km 150 km 300 km 500 km	10 x 9 m 25 x 28 m 40 x 28 m 25 x 28 m 25 x 28 m 50 x 50 m 100 x 100 m	1 x 1 1 x 4 1 x 4 1 x 4 1 x 4 2 x 2 4 x 4
Polarimetric transmit H and V on alternate pulses receive H and V on any pulse	Fine Quad-Pol Standard Quad-Pol	20°- 41° 20°- 41°	25 km 25 km	11 x 9 m 25 x 28 m	1 x 1 1 x 4
Selective Single Polarization transmit H or V receive H or V	Ultra-Fine Multi-Look Flne	30°- 40° 30°- 50°	20 km 50 km	3 x 3 m 11 x 9 m	1 x 1 2 x 2
	1. Ground range by azimuth				
		Data taken from	m CSA-broc	hure, ©2012 C	SA

Data Acquisition: TerraSAR-X

- EOWeb (Next Gen)
 - Web-Interface (IE, Windows only)
 - Direct ordering

TerraSAR-X Image Modes I

Data taken from infoterra-brochure, ©2012 infoterra

TerraSAR-X Image Modes II

	lmaging Mode	Standard Scene Size* [km]	Maximum Acquisition Length [km]	Slant Range Res. ¹ [m]	Azimuth Res. ¹ [m]	Polarization	Full Per- formance Range [°]
	HighRes SpotLight (HS)	10 x 5	5	1.2 1.2	1.1. 2.2	Single (VV or HH) Dual (HH & VV)	20° to 55°
	HighRes SpotLight 300 MHz (HS300)	7-10 x 5	5	0.6	1.1	Single (VV or HH)	20° to 55°
	SpotLight (SL)	10 x 10	10	1.2 1.2	1.7 3.4	Single (VV or HH) Dual (HH & VV)	20° to 55°
	StripMap (SM)	30 x 50 single pol 15 x 50 dual pol	1.650	1.2 1.2	3.3 6.6	Single (VV or HH) Dual (HH & VV, HH & HV, or VV and VH)	20° to 45°
1	ScanSAR (SC)	100 x 150	1.650	n/a	18.5	Single (VV or HH)	20° to 45°

1.

©2012 infoterra

Tool for Image-Series Acquisition

Capturetime Calculator

1.54			atellites:			
All times	Create Wishlist Import XML Import E Format		Blue-Bight/radarsat2:n Blue-Bight/terrasarx:st			
Title			Add		Remove	
	ator, each in a new line	5	itart (UTC)	2012-03-01	L 00:00:00.000	
Enter a list of dates, each in a new line 0000-00-00 00:00:00.000		End (UTC) Max. time difference		2012-05-01 23:59:59.999		
				1:00:00		
			Use Wishlist		Configure Wishlist	
Timezone U	TC-12				Calculate Capturetimes	
C	Save wishlist as		RADARSAT-2/mu	Itilookfine	TerraSAR-X/stripmap	
	//.		1 2012-03-03 03:30	6:17.450000	2012-03-03 03:26:36.733000	
19.00			2 2012-04-27 03:32	2:07.726000	2012-04-27 03:26:36.733000	
			3 2012-04-12 15:29	9:24.813000	2012-04-12 15:15:22.733000	
				\square	Export results	
and the second	and the second second second second second	141.				

Delivered Data: Radarsat-2

- Compressed archive at CSA's FTP server
- Flat hierarchy (only one subfolder containing the XML-schemas)

Name	-
Browselmage.tif	
imagery_VV.tif	
LI-11525-12 RS2 EULA_Single User_V1-9_15JUN2011_ENGLISH.pd	f
LI-11525-12 RS2 EULA_Single User_V1-9_15JUN2011_ESPANOL.pc	lf
LI-11525-12 RS2 EULA_Single User_V1-9_15JUN2011_FRANCAIS.p	df
📄 lutBeta.xml	
📄 lutGamma.xml	
📄 lutSigma.xml	
product.xml	
📄 readme.txt	
schemas	

Delivered Data: TerraSAR-X

- Compressed archive at DLR's FTP server
- Hierarchy with subfolders for each type of metadata

Name 🔺
V 💼 ANNOTATION
GEOREF.xml
V 🚞 AUXRASTER
CAL_QL_MRES_VV_1.tif
CAL_QL_MRES_VV_1.tif.kml
CAL_QL_MRES_VV_2.tif
CAL_QL_MRES_VV_2.tif.kml
CAL_QL_MRES_VV_3.tif
CAL_QL_MRES_VV_3.tif.kml
CAL_QL_MRES_VV_4.tif
CAL_QL_MRES_VV_4.tif.kml
MAPPING_GRID.bin
STD_MRES_VV_1.tif
STD_MRES_VV_1.tif.kml
STD_MRES_VV_2.tif
🔻 🚞 IMAGEDATA
IMAGE_VV_SRA_scan_003.tif
Thumbs.db
V 📄 PREVIEW
BROWSE.tif
COMPOSITE_QL.tif
MAP_PLOT.png
QL_VV_SRA_scan_003.tif
Thumbs.db
▶ 🛄 SUPPORT
TSX1_SARMGD_RESC_S_SRA_20110828T051534_20110828T051556.xml

Outline

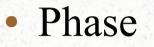
- Requirements of the DTeddie Project
- Data Acquisition
- Radiometric Calibration
- Geographic Calibration
- Discussion
- Outlook and Future Work

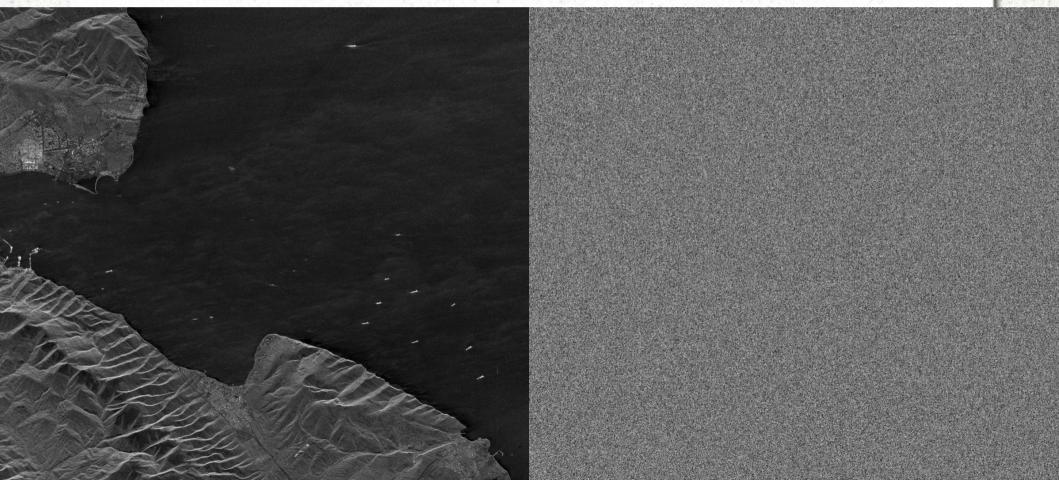
Radiometric Calbration: Radarsat-2

- Read from XML-Metadata (lutBeta.xml, lutGamma.xml, lutSigma.xml)
 - Column-length array gains <gains> ... </gains>
 - Single offset <offset> ... </offset>
- Apply gains and offset for Sigma-nought image $S_0 = R(x,...) * Gains(S_0,x) + Offset(S_0)$
- Special computations needed for complexvalued images!

Radiometric Calibration: TerraSAR-X

- Read from XML-Metadata:
 - Incidence angles at Tie-Points productInfo/sceneInfo/sceneCornerCoord/incidenceAngle
 - Calibration Constant

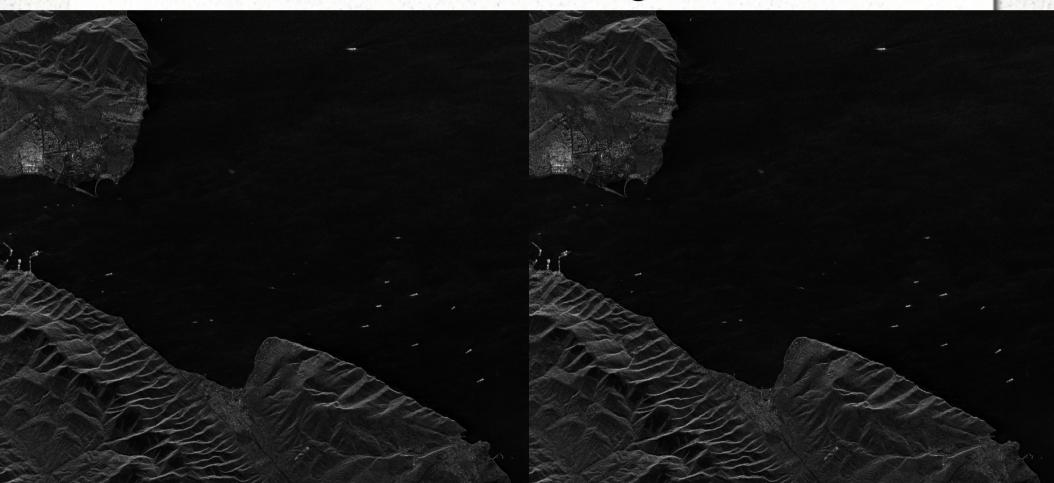

calibration/calibrationConstant/calFactor


• Get min. and max. incidence angle and assume linear distribution for correction:

 $S_0 = R(x,...) * sin(x*(max_ang - min_ang)/w) + CalibrationConstant$

Examples for radiometric Calibration: Radarsat-2 UF_SLC

• Magnitude



Examples for radiometric Calibration: Radarsat-2 UF_SLC

Sigma0

• Beta0

Examples for radiometric Calibration: TerraSAR-X SM

• From Raw-Data to Beta0

Examples for radiometric Calibration: TerraSAR-X SM

• From Beta0 to Sigma0

Outline

- Requirements of the DTeddie Project
- Data Acquisition
- Radiometric Calibration
- Geographic Calibration
- Discussion
- Outlook and Future Work

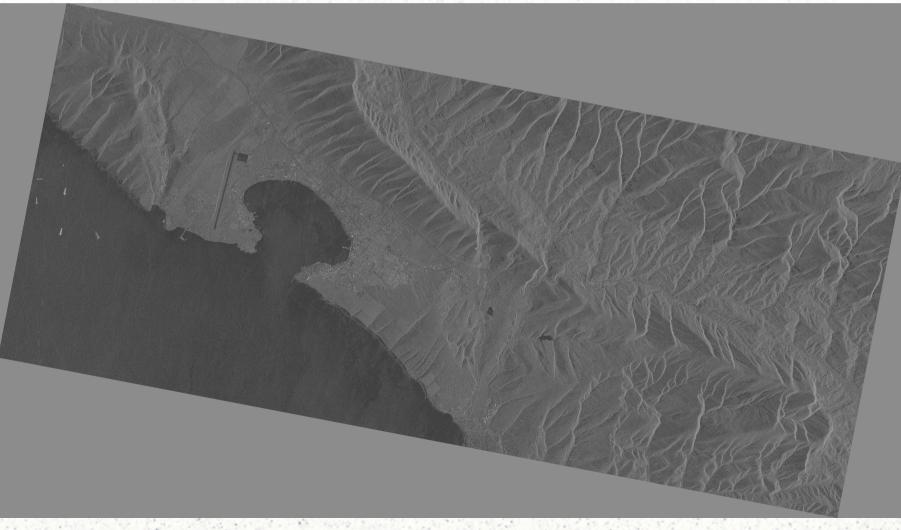
Geographic Calibration I

- Two-step approach:
 - 1. Orthorectify images (automatically)
 - 2. Co-register images (manually, pointwise)
- First step is executed by GDAL library:

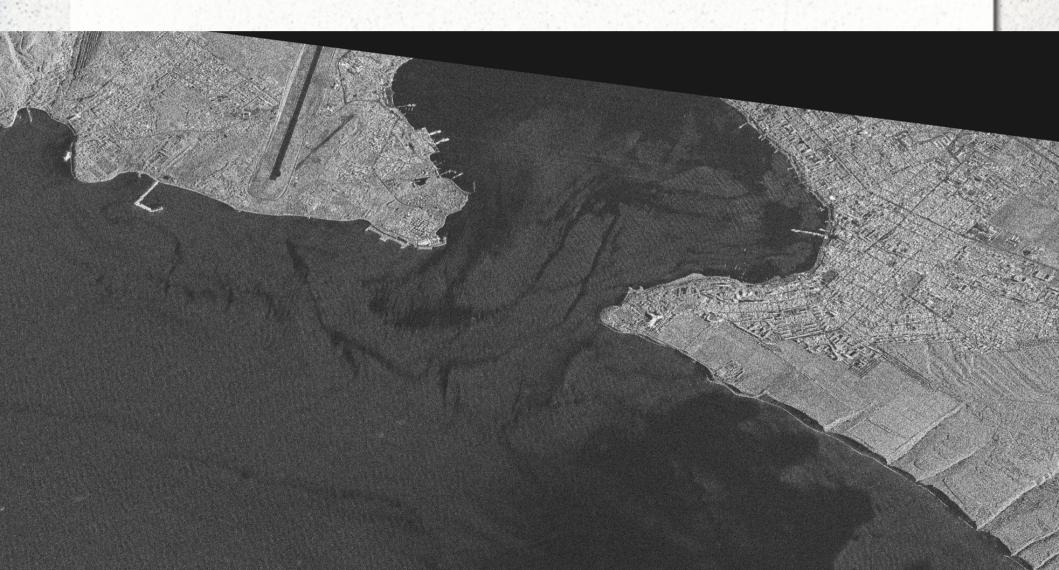
- gdalwarp "infile.tif" "outfile.tif" -t_srs "+proj=longlat +ellps=WGS84"

transformes the Axis to lon, lat coordinates according to the WGS84 ellipsoid

• Co-registration of images using program of choice (e.g. ENVI)


Examples for geographical calibration

• Sigma0-image of TerraSAR-X



Examples for geographical calibration

• Orthorectified image

Co-registration Radarsat-2

Co-registration TerraSAR-X

Outline

- Requirements of the DTeddie Project
- Data Acquisition
- Radiometric Calibration
- Geographic Calibration
- Discussion
- Outlook and Future Work

Discussion I

- We have implemented the whole processing chain in Python, using:
 - xml.etree for XML-related procedures
 - osgeo.gdal for RAW-Data handling
 - vigra for image processing
- Platform-independent
- Only ~500 lines of code
- But....

Discussion II

- ... relatively large amount of memory needed.
- Images need to be stored as (unpacked) float arrays in RAM
- Example for a high-resolution TerraSAR-X image (16,960 * 25,288) px:

16,960 * 25,288 * 4 Byte = 1.63GB p. channel

• Often, at least twice the memory of an image is needed, or more channels

Discussion III

- Memory problems solved by a workstation with 16 processors and 24GB of RAM
- Better implementation would yield a certain redevelopment:
 - Maybe without Python
 - Surely many more lines of code
 - Probably less reliable
- Costs above value!

Discussion IV

- Manual co-registration still necessary due to
 - Different flight directions
 - Different RADAR-bands
 - Different imaging modes
- A prori orthorectification has shown to be very helpful for this last manual step!
 - Orthorectification is done automatically
 - Coarse geometry is known afterwards

Outline

- Requirements of the DTeddie Project
- Data Acquisition
- Radiometric Calibration
- Geographic Calibration
- Discussion
- Outlook and Future Work

Outlook

- Aquisition of more scenes for the DTeddie project by the help of the developed tool
- Running the Python Preprocessing tools on the acquired data
- Distribution of the data and the preprocessed data
- Adapt w.r.t. user needs?

Future work

- Test for Python-optimizations to further
 - increase speed and
 - decrease memory usage.
- Adapt for new data formats if necessary, currently supported:
 - Radarsat-2 Single Look Complex data
 - TerraSAR-X Stripmap Mode data
- Increase usability (currently commandline)

Thank you for your attention!