Сергей А. Лебедев
Геофизический Центр РАН
Институт космических исследований РАН

Светлана Н. Шауро Геофизический Центр РАН

Пространственно-временная изменчивость сплоченности морского льда в Южном океане по данным дистанционного зондирования

Содержание

- Климатические изменения в Южном океана
- Дистанционные измерения морского льда
- ⇒ Источники информации
- ⇒ Сплоченность морских льдов
- □ Пространственно-временная изменчивость сплоченности морских льдов
- Связь сплоченности морских льдов с атмосферной циркуляцией
- Заключение

Южный океан

Схема тепло- и массообмена между Южным океаном и Атлантическим, Индийским и Тихим океанами (Schmitz, 1996).

III Международный выездной семинар-школа «спутниковые методы и системы исследования Земли» Таруса, 28 февраля – 5 марта 2012 г. © 2011, ГЦ РАН, ИКИ РАН, С.А. Лебедев, С.Н. Шауро

Межгодовая изменчивость ТПО

- **⊃** Для Южного Океана в целом ТПО имеет отрицательный тренд -0.02±0.003 °C/год.
- Однако в районах В пределах 300-1000 километровой полосы к северу от побережья Антарктиды ТПО растет со скоростью 0.01±0.005 °C/год.
- Южно-тихоокеанского поднятия и восточной части Южно-Атлантического хребта скорость падения ТПО более высокая и составляет более -0.065±0.007 °C/год.

Межгодовая изменчивость уровня

- В целом уровень Южного океана растет со средней скоростью около 0.24±0.026 см/год.
- **⇒** В районе Южнотихоокеанского поднятия уровень падает со скоростью -0.21±0.05 см/год.
- В восточной части Африканско-Атлантической котловины уровень океана также падает только с более высокой скоростью -0.19±0.07 см/год.
- В районах северо-восточной части Аргентинской котловины, юго-восточной части Капской котловины (на стыке с котловиной Агульяс) и в центральной части Южно-австралийской котловины наблюдается падение уровня со скоростью более чем 0.11±0.03 см/год.

Межгодовая изменчивость температуры приземного воздуха

Изменения в температурном режиме Антарктики начались с 80-тых годов XX столетия.

Восточная Антарктида − период падения 1954-1988 гг. (-0,7°C), роста − 1989-2008 гг. (2,4°C);

3 Западная Антарктида – период роста 1956-1987гг. (3,3°С), падения – 1988-2008 гг. (-1,9°С);

○ Антарктический полуостров – период слабого роста 1903-1980 гг. (0,1°C), период сильного роста 1981-2008гг. (1,7°C)

Климатический тренд изменения температуры приземного воздуха (°С/год) в Антарктике за период с 1957 по 2006 гг.

Содержание

- **Климатические изменения в Южном**океана
- Дистанционные измерения морского льда
- ⇒ Источники информации
- Э Сплоченность морских льдов
- Опространственно-временная изменчивость сплоченности морских льдов
- Связь сплоченности морских льдов с атмосферной циркуляцией
- **○** Заключение

- Э ИК радиометрия
- Э СВЧ радиометрия
- Сканеры видимого диапазона и фотокамеры
- Э РСА изображения
- Скаттеромеория
- Э Альтиметрия

Содержание

- ⇒ Источники информации
- □ Сплоченность морских льдов
- □ Пространственно-временная изменчивость сплоченности морских льдов
- Связь сплоченности морских льдов с атмосферной циркуляцией
- **○** Заключение

Источники информации

Данные сканирующего многоканального радиометра микроволнового SMMR (Scanning Multichannel Microwave Radiometer) спутника Nimbus-7 с пространственным разрешением 25 км.

- **○** Данные специального микроволнового датчика SSM/I (Special Sensor Microwave/Imagers) спутников DMSP -F8 (Defense Meteorological Satellite Program), -F11 и -F13 с пространственным разрешением 25 км.
- ⇒ Данные специального микроволнового датчика SSMIS (Special Sensor Microwave Imager/Sounder) спутников DMSP-F17 с пространственным разрешением 25 км.

Спутники Nimbus-7 и DMSP

The state of the s
All the second sections in the second
A1 SO 9
100 A
in the second
[14] pd

Parameter	Nimbus-7		DMSP-F8	DMSP-F11		DMSP-F13	DMS	DMSP-F17	
Nominal Altitude*	955 km		860 km	830 km		850 km	850 km		
Inclination Angle	99.1 degrees		98.8 degrees	98.8 degrees		98.8 degrees	98.8 degrees		
Orbital Period	104 minutes		102 minutes	101 minutes		102 minutes	102 m	102 minutes	
Ascending Node Equatorial Crossing (Local Time)			Approximately 6:00 a.m.	Approximately 5:00 p.m.		Approximately 5:43 p.m.	Approximately 5:31 p.m.		
Earth Incidence Angle*	50).2	53.1 52.8		2.8	53.4	53.1		
Instrument	SMMR			SSM/I			SSMIS		
Algorithm Frequencies*, GHz	18.0	37.0	19.3		37.0		19.3	37.0	
Polarized	V, H	\mathbf{V}	V, H		V		V, H	V	
Footprint Size, km	55x41	27x18	70x45		38x30		70x45	38x30	
3 dB Beam Width (Degrees)*	1.6	0.8	1.9	1.9		1.1		1.1	
Time Period	26.10.1978 - 20.08.1987		09.07.1987 – 31.12.1991	03.12.1991 - 30.09.1995		03.05.1995 – 29.04.2009	29.04.2009 – present time		

^{*} Indicates sensor and spacecraft orbital characteristics of the sensors used in generating the sea ice concentrations.

Содержание

- **Климатические изменения в Южном**океана
- Дистанционные измерения морского льда
- ⇒ Источники информации
- ⇒ Сплоченность морских льдов
- Опространственно-временная изменчивость сплоченности морских льдов
- Связь сплоченности морских льдов с атмосферной циркуляцией
- Э Заключение

Сплоченность морских льдов

Спутниковые методы – одно из наиболее важных и эффективных средств мониторинга изменения морского льда в Южном океане

Параметры морского ледяного покрова:

СПЛОЧЕННОСТЬ МОРСКИХ ЛЬДОВ — процентное соотношение морского льда и чистой воды в одном пикселе

$$C_{ice} = \frac{T_{b-wate} - T_{b}}{T_{b-wate} - T_{b-ice}}$$

- □ площадь льда сумма площадей пикселей умноженных на сплоченность морских льдов для каждого пикселя при сплоченности не менее 15%
- **□** <u>протяженность льда</u> кумулятивная площадь всех пикселей, имеющих сплоченность морских льдов не менее 15%

Сплоченность морских льдов

Карта сплоченности морских льдов (%) в (а)сентябре 1995 г. и (б) январе 1997 г.

Содержание

- Дистанционные измерения морского льда
- ⇒ Источники информации
- ⇒ Сплоченность морских льдов
- □ Пространственно-временная изменчивость сплоченности морских льдов
- Связь сплоченности морских льдов с атмосферной циркуляцией
- Э Заключение

Временная изменчивость сплоченности морских льдов

Изменение по месяцам межгодовых среднеквадратических отклонений (a) и климатический сезонный цикл (б) аномалий площадей морских льдов разной сплоченности

Временная изменчивость сплоченности морских льдов

- Сезонная изменчивость сплоченности льдов наиболее ярко выражена в морях Уэдделла, Лазарева, Содружества, на северных границах морей Росса, Амундсена и Беллинсгаузена

Карта среднеквадратических отклонений сплоченности морских льдов за период с 1979 по 2010 гг.

Межгодовая изменчивость площади сплоченности морских льдов

(а) – (б) Межгодовая изменчивость площади покрытия морских льдов различной сплоченности

Межгодовая изменчивость сплоченности морских льдов

- Межгодовая изменчивость сплоченности льдов наиболее ярко выражена в морях Уэдделла, Лазарева и Беллинсгаузена
- Максимальный положительный тренд (более +0.5%/год) наблюдается в море Лазарева а минимальный (более -0.5%/год) − в море Беллинсгаузена

Карта межгодового тренда изменчивости сплоченности морских льдов (%/год) за период с 1979 по 2010 гг.

Содержание

- Обращения в Народний в Народ
- Дистанционные измерения морского льда
- ⇒ Источники информации
- ⇒ Сплоченность морских льдов
- Опространственно-временная изменчивость сплоченности морских льдов
- Связь сплоченности морских льдов с атмосферной циркуляцией
- **○** Заключение

Связь сплоченности морских льдов с атмосферной циркуляцией

Индекс южного колебания (SOI) из месячных или сезонных флуктуаний разницы атмосферного давления на уровне моря между Таити и Дарвином

Карта изменчивости коэффициента корреляции между индексом SOI и сплоченностью морских льдов за период с 1979 по 2010 гг.

Связь сплоченности морских льдов с атмосферной циркуляцией

Индекс антарктического колебания (SAMI) из месячных или сезонных флуктуаций разницы средних значений атмосферного давления между 40 и 65° ю.ш.

Карта изменчивости коэффициента корреляции между индексом SAMI и сплоченностью морских льдов за период с 1979 по 2010 гг.

Связь сплоченности морских льдов с атмосферной циркуляцией

Индекс северо-атлантического колебания (NAO) из месячных или сезонных флуктуаций разницы атмосферного давления на уровне моря между Гибралтаром (Лисбоном или Понта Дельгада) и Рейкъявиком

Карта изменчивости коэффициента корреляции между индексом NAO и сплоченностью морских льдов за период с 1979 по 2010 гг.

Заключение

- Сезонная изменчивость сплоченности льдов наиболее ярко выражена в морях Уэдделла, Лазарева, Содружества, на северных границах морей Росса, Амундсена и Беллинсгаузена
- Максимальные значения СКО (более 40) отмечаются в морях Уэдделла и Лазарева, где наблюдается интенсивная сезонная динамика вод и происходят наибольшие сезонные смещения границы морских льдов
- Межгодовая изменчивость сплоченности льдов наиболее ярко выражена в морях Уэдделла, Лазарева и Беллинсгаузена. Максимальный положительный тренд (более +0,5%/год) наблюдается в море Лазарева а минимальный (менее -0,5%/год) − в море Беллинсгаузена
- Максимальная прямая корреляционная связь между сплоченностью льда и индексом SOI отмечается в море Лазарева (более 0,5), где наблюдаются наибольшая межгодовая изменчивость распределения сплоченность льдов, а обратная корреляция − западнее Антарктического полуострова (менее -0,5)
- Максимальная прямая корреляционная связь между сплоченностью льда и индексом SAMI так же отмечается в области с наибольшей межгодовой изменчивостью распределения льдов.

Спасибо за внимание

