Сергей А. Лебедев

Океанографическая информация

Основными параметрами состояния Мирового океана, измеряемыми традиционными контактными методами измерений, являются:

- Э-температура,
- Э соленость,
- Э скорость и направление течений,
- Э уровень морской воды,
- Э содержание кислорода,
- Э содержание нитратов,
- Э содержание фосфатов и т.д.

Дистанционные методы дают информацию о следующих параметрах состояния Мирового океана:

- Э температуре поверхности океана,
- Э соленость поверхности океана,
- Э высота морской поверхности,
- 🗢 морской лед,
- Э высота морских ветровых волн,
- 🗢 цвет морской воды и т.д.

Четвертая выездная Школа-семинар «Спутниковые методы и системы исследования Земли» Таруса, 19-25 февраля 2013 г.

📕 © 2013, ГЦ РАН, ИКИ РАН, С.А. Лебедев

Типы методов дистанционного зондирования

Методы дистанционного зондирования подразделяют на три типа: пассивные, полуактивные и активные.

- Пассивные методы основаны на регистрации теплового излучения (ИК и СВЧ) и естественного гаммаизлучения с поверхности моря.
- Полуактивные методы основаны на облучении естественными и искусственными источниками электромагнитного излучения в широком спектральном диапазоне и в анализе сопоставления изменения спектрального состава отраженного сигнала.
- При использовании <u>активных методов</u> исследуемая водная поверхность облучается источниками излучения заданного спектрального состава с регистрацией или отраженного излучения, или флуоресценции, или комбинационного рассеяния.

Поля и явления Мирового океана исследуемые дистанционными методами зондирования

	Поля и явления Мирового океана	Параметры и характеристики	Датчик			
	Температура поверхности океана	Температура	ИК-радиометр СВЧ-радиометр			
1			спектрорадиометр			
	Соленость поверхности океана Соленость		СВЧ-радиометр-интерферометр			
			поляриметрический СВЧ-радиометр			
) 2 4	Уровень моря	Аномалии поля уровня, колебания уровня	альтиметр			
			скаттерометр			
	Приводный ветер Скорость и направление ветра		СВЧ-радиометр			
		Скорость и направление ветра	альтиметр			
		радиолокатор с синтезированной апертурой (РСА)				
		Распространение, положение кромки,	ИК-радиометр			
		толщина, возраст, сплоченность,	СВЧ-радиометр			
	морские льды	скорость и направление дрейфа льдов и	РСА,			
		т.п.	альтиметр			
			PCA,			
	состояние поверхности моря,	дляпа, высота и папрабление распространения поверуностных воли	СВЧ-радиометр			
	Domenne	pacifice ipanential nobepatioe indix boin	альтиметр			
	Ивет волы, биопролуктивность	Цвет воды, концентрация хлорофилла,	спектрорадиометр			
	Leer bogos, ononpogyarinonoero	фитопланктона, концентрация взвеси	фотокамеры			
L		שהוסוגומחתוסחמ, תסחערהו שמעות ששטכנים	фотокамеры			

Поля и явления Мирового океана исследуемые дистанционными методами зондирования

Поля и явления Мирового океана	Параметры и характеристики	Датчик			
Морские течения, динамика водных масс, фронтальные зоны	Скорость и направление течения, морфологическая структура, градиент температуры	Датчик ИК-радиометр спектрорадиометр РСА альтиметр ИК-радиометр РСА ИК-радиометр РСА альтиметр акселерометр			
Мезо/мелкомасштабные явления на морской поверхности	Вихри, проявление внутренних волн,	ИК-радиометр спектрорадиометр РСА			
Загрязнение нефтяными углеводородами и поверхностно активными веществами	Цвет воды, ослабление поверхностных капиллярных волн	ИК-радиометр РСА			
Рельеф дна	Формы рельефа дна мелководного шельфа, морфология дна Мирового океана	альтиметр			
Граритационное поле	Глобальное поле силы тяжести и его временные вариации, вызванные перераспределениями атмосферных	акселерометр			
т разптационное поле	масс, океанической циркуляцией, изменениям уровня моря за счет таяния полярного льда и т.д.	трехосный градиентометр			

Четвертая выездная Школа-семинар «Спутниковые методы и системы исследования Земли» Таруса, 19-25 февраля 2013 г. © 2013, ГЦ РАН, ИКИ РАН, С.А. Лебедев

Температура поверхности океана

Температура поверхности океана

Температура поверхности океана

Температура поверхности океана по данным спектрорадиометра MODIS спутника Agua на 13 ноября 2012 года

Температура поверхности океана по данным спектрорадиометра VIRRS спутника Suomi NPP на 13 ноября 2012 года

Температура поверхности океана

🚨 💿 2013, ГЦ РАН, ИКИ РАН, С.А. Лебедев

Таруса, 19-25 февраля 2013 г.

Основные типы датчиков и точность измерения температуры поверхности океана

	<u> </u>		
Датчик	полосы а, <i>(км)</i>	нственно шение, <i>и</i>)	ть, (°К)
Название	Ширина обзор	Простран е разре <i>(к</i> и	Точнос
Visible Infrared Spin-Scan Radiometer (VISSR)	120°	5	0,8
Advanced Very High Resolution Radiometers (AVHRR)	2600-4000	1,10-4,00	0,3–0,5
Along-Track Scanning Radiometer (ATSR)	500	1	0,3
Moderate-resolution Imaging Spectroradiometer (MODIS)	2330	0,250–1	0,3
Visible/Infrared Imager/Radiometer Suite collects (VIIRS)	3000	0,75–1	0,3
Scanning Multi-channel Microwave Radiometer (SMMR)	600–780	50	0,7–1,4
TRMM (Tropical Rainfall Measuring Mission) Microwave Imager (TMI)	780	4,6–6,9	0,6–0,9
Special Sensor Microwave Imager (SSMI)	1400	25	0,6–0,7
Advanced Microwave Scanning Radiometer - EOS (AMSR-E)	1445	5,4–56	0,4–0,6
	ДатчикНазваниеVisible Infrared Spin-Scan Radiometer (VISSR)Advanced Very High Resolution Radiometers (AVHRR)Along-Track Scanning Radiometer (ATSR)Moderate-resolution Imaging Spectroradiometer (MODIS)Visible/Infrared Imager/Radiometer Suite collects (VIIRS)Scanning Multi-channel Microwave Radiometer (SMMR)TRMM (Tropical Rainfall Measuring Mission) Microwave Imager (TMI)Special Sensor Microwave Imager (SSMI)Advanced Microwave Scanning Radiometer - EOS (AMSR-E)	ДатчикпореказиНазвание120°Visible Infrared Spin-Scan Radiometer (VISSR)120°Advanced Very High Resolution Radiometers (AVHRR)2600–4000Along-Track Scanning Radiometer (ATSR)500Moderate-resolution Imaging Spectroradiometer (MODIS)2330Visible/Infrared Imager/Radiometer Suite collects (VIIRS)3000Scanning Multi-channel Microwave Radiometer (SMMR)600–780TRMM (Tropical Rainfall Measuring Mission) Microwave Imager (TMI)780Special Sensor Microwave Imager (SSMI)1400Advanced Microwave Scanning Radiometer - EOS (AMSR-E)1445	ДатчикBoog (b) vedogo vedogo vedogo vedogo vedogo vedogo vedogo vedogo vedogo vedogo vedogo vedogo vedogo vedogo vedogoOffer of vedogo vedogo vedogo vedogo vedogo vedogoVisible Infrared Spin-Scan Radiometer (VISSR)120°5Advanced Very High Resolution Radiometers (AVHRR)2600–40001,10–4,00Along-Track Scanning Radiometer (ATSR)5001Moderate-resolution Imaging Spectroradiometer (MODIS)23300,250–1Visible/Infrared Imager/Radiometer Suite collects (VIIRS)30000,75–1Scanning Multi-channel Microwave Radiometer (SMMR)600–78050TRMM (Tropical Rainfall Measuring Mission) Microwave Imager (TMI)7804,6–6,9Special Sensor Microwave Imager (SSMI)140025Advanced Microwave Scanning Radiometer - EOS (AMSR-E)14455,4–56

Четвертая выездная Школа-семинар «Спутниковые методы и системы исследования Земли» Таруса, 19-25 февраля 2013 г. © 2013, ГЦ РАН, ИКИ РАН, С.А. Лебедев

())

Температура поверхности океана Климатические изменения

Четвертая выездная Школа-семинар «Спутниковые методы и системы исследования Земли» Таруса, 19-25 февраля 2013 г.

📕 💿 2013, ГЦ РАН, ИКИ РАН, С.А. Лебедев

Температура поверхности океана Климатические изменения

Для Южного Океана в целом ТПО имеет отрицательный тренд -0.02±0.003 °С/год.
Однако в районах в пределах 300-1000 километровой полосы к северу от побережья Антарктиды ТПО растет со скоростью 0.01±0.005 °С/год.
Южно-тихоокеанского

Южно-тихоокеанского поднятия и восточной части Южно-Атлантического хребта скорость падения ТПО более высокая и составляет более -0.065±0.007 °С/год.

Климатические изменения температуры поверхности морей

Сезонная и межгодовая изменчивость температуры поверхности морей проводился по данным NASA JPL PO.DAAC AVHRR-Pathfinder с пространственным разрешением 4 км.

Четвертая выездная Школа-семинар «Спутниковые методы и системы исследования Земли» Таруса, 19-25 февраля 2013 г.

📕 💿 2013, ГЦ РАН, ИКИ РАН, С.А. Лебедев

Температура поверхности океана Антарктическая циркумполярная волна

Среднемесячные аномалии температуры поверхности океана (цветные изообласти) и атмосферное давление на уровне моря (изолинии проведены через 0,5 гПа) за апрель 1987 года

Четвертая выездная Школа-семинар «Спутниковые методы и системы исследования Земли» Таруса, 19-25 февраля 2013 г.

📕 💿 2013, ГЦ РАН, ИКИ РАН, С.А. Лебедев

Температура поверхности океана Струйные течения

Температура поверхности океана Апвеллинг

Поле температуры поверхности океана в районе Канорского апвеллинга, полученное со спутника NOAA на 14 августа 1997 года Поле температуры поверхности океана в районе Калифорнийского побережья, полученное со спутника NOAA на 12 июня 1993 года

Температура поверхности океана Локализация фронтальных зон

(а) ТПО (красные линии) и градиент ТПО (черные линии) с ХВТ наблюдений (толстые линии) и AMSR-Е измерений (тонкие) для разреза через пролив Дрейка в сентябре 2003 года.

(б) Соответствующее пространственное распределение градиентов ТПО (по данным AMSR-E) и расположения Полярного фронта по данным AMSR-E(белая линия) и XBT данным (черная линия).

Среднее за 3 года положение Полярного фронта (ПФ) (черная линия) по данным AMSR-E. Цветом аоказан рельефа дна. Заштрихованная область показывает стандартное отклонение положения ПФ.

Температура поверхности океана Мезомасштабные вихри

Четвертая выездная Школа-семинар «Спутниковые методы и системы исследования Земли» Таруса, 19-25 февраля 2013 г.

🗳 💿 2013, ГЦ РАН, ИКИ РАН, С.А. Лебедев

Температура поверхности океана Мезомасштабные вихри

Фрагменты ИК-изображений, полученных со спутника NOAA-14 в 2001 году 8 января (левый рисунок), 16 февраля (центральный рисунок), 9 марта (правый рисунок)

Четвертая выездная Школа-семинар «Спутниковые методы и системы исследования Земли» Таруса, 19-25 февраля 2013 г.

╘ 🛛 © 2013, ГЦ РАН, ИКИ РАН, С.А. Лебедев

Соленость поверхности океана

Соленость поверхности океана по данным поляриметрического СВЧ-радиометра Aquarius спутника Aquarius/SAC-D с 25 августа по 11 сентября 2012 года

Четвертая выездная Школа-семинар «Спутниковые методы и системы исследования Земли» Таруса, 19-25 февраля 2013 г. © 2013, ГЦ РАН, ИКИ РАН, С.А. Лебедев

Основные типы датчиков и точность измерения солености водной поверхности с борта ИСЗ

	Да	тчик	ый Эе	ый De TOCЫ (M) , (KM)		
	Тип	Тип (полное и евое и сокращенное)		Ширина пол обзора, (к	Пространств разрешение	Точность
		Microwave Imaging	влажность почвы		3550	4%
	СВЧ-радиометр- интерферометр	Radiometer by Aperture Synthesis (MIRAS)	соленость поверхности воды	1000	100200	0,1 - 0,4‰
					76 х 94 км,	
	поляриметрическ ий СВЧ- ралиометр	етрическ Integrated L-band соленость radiometer and поверхности 1000	84 х 120 км,	0,2‰		
					96 х 156 км	

Излучение поверхности океана в видимом диалазоне

Основные характеристики океана, рассчитываемые по данным сканеров цвета

	and the second sec
Параметр	Использование
Спектральный коэффициент яркости водной толщи	Характеризует пространственно-временную изменчивость свойств поверхностного слоя; позволяет наблюдать динамические процессы в поверхностном слое, в частности, распространение речных стоков, примесей различного происхождения, мезомасштабные вихри, фронтальные зоны и т.п.
Концентрация хлорофилла	Характеризует биомассу фитопланктона; ключевая характеристика для расчета первичной продукции океанов и морей
Спектральная облученность поверхности	Важный фактор, определяющий первичную продукцию и тепловой баланс океана
Показатель вергикального ослабления подводной облученности	Ключевая характеристика для расчета светового режима в водной толще, альбедо океана и объемного поглощения солнечной энергии в поверхностном слое
Первичная продукция	Один из основных параметров, характеризующий биоресурсы океана и определяющий глобальные потоки углерода в системе атмосфера- океан
Показатель поглощения окрашенным органическим веществом	Определяет поглощение света в воде, характеризует содержание окрашенной органики и качество воды в прибрежной зоне, один из параметров мониторинга
Показатель рассеяния морской взвеси	Определяет альбедо водной толщи, характеризует содержание взвеси в воде, один из параметров мониторинга

Четвертая выездная Школа-семинар «Спутниковые методы и системы исследования Земли» Таруса, 19-25 февраля 2013 г.

Спутниковые сканеры цвета

Датчик	Космическое агенство (страна)	Спутник–носитель	Время работы	Ширина полосы обзора, (км)	Простанственное разрешение, (м)	Число каналов	Спектральный диапазон, (нм)	Орбита
CZCS	NASA, (USA)	Nimbus-7, (USA)	24/10/78 - 22/06/86	1556	825	6	433-12500	Polar
CMODIS	CNSA, (China)	SZ–3, (China)	25/03/02 - 15/09/02	650-700	400	34	403-12500	Polar
COCTS	CNSA, (China)	HY–1A, (China)	15/05/02 - 01/04/04	1400	1100	10	402-12500	Polar
CZI				500	250	4	420-890	
GLI	NASDA, (Japan)	ADEOS-II, (Japan)	14/12/02 - 24/10/03	1600	250/1000	36	375-12500	Polar
MERIS	ESA, (Europe)	ENVISAT, (Europe)	01/03/02 - 09/05/12	1150	300/1200	15	412-1050	Polar
MOS	DLR, (Germany)	IRS P3, (India)	21/03/96 - 31/05/04	200	500	18	408-1600	Polar
OCI	NEC, (Japan)	ROCSAT–1, (Taiwan)	27/01/99 - 16/06/04	690	825	6	433-12500	Polar
OCM	ISRO, (India)	IRS-P4, (India)	26/05/99 - 08/08/10	1420	360/4000	8	402-885	Polar
OCTS	NASDA, (Japan)	ADEOS, (Japan)	17/08/96 - 29/06/97	1400	700	12	402-12500	Polar
OSMI	KARI, (Korea)	KOMPSAT-1 /Arirang-1, (Korea)	20/12/99 - 31/01/08	800	850	6	400-900	Polar
POLDER	CNES, (France)	ADEOS, (Japan)	17/08/96 - 29/06/97	2400	6 km	9	443-910	Polar
POLDER-2	CNES, (France)	ADEOS–II, (Japan)	14/12/02 - 24/10/03	2400	6000	9	443-910	Polar
SeaWiFS	NASA, (USA)	OrbView–2, (USA)	01/08/97 - 14/02/11	2806	1100	8	402-885	Polar
COCTS	CNSA (China)	HV-1B (China) 11/04/(11/04/07 -	2400	1100	10	402-12500	Polar
CZI	ensia, (Cinna)	III-ID, (Ciiiia)	11/04/07 – настоящее время	0,5	250	4	433-695	1 0121
GOCI	KARI/KORDI, (South Korea)	COMS	26/06/10 - настоящее время	2500	500	8	400-865	Geostationary
нісо	ONR and DOD, Space Test Programme	JEM–EF, Int. Space Stn.	18/09/09 – настоящее время	50	100	124	380-1000	51.6°, 15.8°
MERSI	CNSA, (China)	FY–3A, (China)	27/05/08 – настоящее время	2400	250/1000	20	402-2155	Polar
MERSI	CNSA, (China)	FY-3B, (China)	05/11/10 - настоящее время	2400	250/1000	20	402-2155	Polar
MODIS-Aqua	NASA, (USA)	Aqua, (EOS-PM1)	04/05/02 - настоящее время	2330	250/500/1000	36	405-14385	Polar
MODIS-Terra	NASA, (USA)	Terra, (EOS–AM1)	18/12/99 – настоящее время	2330	250/500/1000	36	405-14385	Polar
OCM-2	ISRO, (India)	Oceansat–2 , (India)	23/09/09 - настоящее время	1420	360/4000	8	400-900	Polar
POLDER-3	CNES, (France)	Parasol	18/12/04 – настоящее время	2100	6000	9	443-1020	Polar
VIIRS	NOAA /NASA, (USA)	NPP	28/09/11 – настоящее время	3000	370 / 740	22	402-11800	Polar

Основные программы спутниковых измерений оптических свойств поверхности океана

Четвертая выездная Школа-семинар «Спутниковые методы и системы исследования Земли» Таруса, 19-25 февраля 2013 г.

© 2013, ГЦ РАН, ИКИ РАН, С.А. Лебедев

Спутниковые сканеры цвета

Датчик	Космическое агенство (страна)	Спутник–носитель	Время работы	Ширина полосы обзора, (км)	Простанственное разрешение, (м)	Число каналов	Спектральный диапазон, (нм)	Орбита	
OLCI	ESA/, EUMETSAT	GMES–Sentinel 3A	2014	1270	300/1200	21	400-1020	Polar	
HSI	DLR (Germany)	EnMAP	2015	30	30	228	420-2450	Polar	
SGLI	JAXA, (Japan)	GCOM-C	2015	1150 - 1400	250/1000	19	375-12500	Polar	
COCTS		HV 1C/D (China)	2014	2900	1100	10	402-12500	Polor	
CZI	CIVOA, (Ciinia)		2014	1000	250	10	433 - 885	Polar Polar	
Multi–spectral Optical	INPE/, CONAE	SABIA-MAR	2017	200/2200	200/1100	16	380-11800	Polar	
OC Scanner	ROSCOSMOS, (Russia)	Motoor 3M(3)	2015	3000	1000	8	402-85	Polar	
Coastal Zone Scanner		wieteor-5wi(5)	2015	800	80	6	410-786	rotar	
VIIRS	NOAA /NASA, (USA)	JPSS-1	2015	3000	370 / 740	22	402-11,800	Polar	
OLCI	ESA/, EUMETSAT	GMES-Sentinel 3B	2017	1265	260	21	390-1040	Polar	
COCTS,	CNSA (China)	IIV 1E/E (China)	2017	2900	1100	10	402-12500	Dolon	
CZI	CNSA, (Ciiina)			1000	250	4	433-885	rotar	
GOCI-II	KARI/KORDI, (South Korea)	KMGS-B	2018	1200 x 1500, TBD	250/1000	13	412–1240, TBD	Geostationary	
OES	NASA	PACE	2018	*	*	*	*	Polar	
OES	NASA	ACE	>2020	TBD	1000	26	350-2135	Polar	
Coastal Ocean Color Imaging Spec (Name TBD)	NASA	GEO-CAPE	>2022	TBD	250 - 375	155 TBD	340-2160	Geostationary	

Будущие программы спутниковых измерений оптических свойств поверхности океана

Четвертая выездная Школа-семинар «Спутниковые методы и системы исследования Земли» Таруса, 19-25 февраля 2013 г.

📕 💿 2013, ГЦ РАН, ИКИ РАН, С.А. Лебедев

Исходящее из воды излучение (551 нм)

📕 💿 2013, ГЦ РАН, ИКИ РАН, С.А. Лебедев

Концентрация хлорофилла

Средняя концентрация хлорофилла летом в Балтийском море по данным MODISспутника Aqua. За период с 1998 по 2007 гг. наблюдается тенденция роста концентрации хлорофилла летом со скоростью 0,069 мг м⁻³/год по всему бассейну, -0,083 мг м⁻³/год в южной части моря и 0,657 мг м⁻³/год в Финском заливе.

Четвертая выездная Школа-семинар «Спутниковые методы и системы исследования Земли» Таруса, 19-25 февраля 2013 г.

🔹 © 2013, ГЦ РАН, ИКИ РАН, С.А. Лебедев

Изменчивость морфометрических параметров

Идентификация зон аккумуляции и эрозии на северновосточном побережье Финского залива Балтийского моря по данным спутника **IKONOS Ha 12** июля 2002 года (верхний рисунок) и на 14 августа 2007 года (нижний рисунок).

Показатель поглощения окрашенным органическим веществом

Цветение водорослей в Норвежском и Баренцевом морях по данным MODIS спутника Aqua на 22 июня 2011 года (левый рисунок) и данным MERIS спутника ENVISAT на 24 августа 2011 года (верний рисунок)

Показатель рассеяния морской взвеси

Содержание взвешенного вещества в акватории эстуария реки Янцзы, впадающей в Восточно-Китайское море по данным MERIS спутника ENVISAT на 23 июня и 15 августа 2007 года,

Изображения спутника Landsat TM лимана Фицрой и залива Кеппеля (Квинсленд, Австралия) 15 мая 2003 года. Беловатая окраска воды близ устья лимана обусловлено взвесью

Спутниковый мониторинг взвешенных веществ при строительстве газопровода «Nord Stream»

Четвертая выездная Школа-семинар «Спутниковые методы и системы исследования Земли»

a) – трансграничный перенос взвеси между Финляндией, Эстонией и Россией;

б) – трансграничный перенос взвеси между Финляндией и Россией, и место строительства газопровода «Nord Stream» (в красном круге);

в) – трансграничный перенос взвеси речного плюма Нарвы и взмучивание вод при строительстве нефтяного терминала в Усть-Луге;

г) – взмучивание вод при строительстве нефтяного терминала в Усть-Луге;

д) – взмучивание вод при строительстве нефтяного терминала в Усть-Луге и мощная, адвекция взвеси с востока на запад.

© 2013, ГЦ РАН, ИКИ РАН, С.А. Лебедев

Таруса, 19-25 февраля 2013 г.

Уровень Мирового Океана и морей

Основные программы спутниковой альтиметрии

Программа		Время активной работы, месяи/год	Масса, <i>кг</i>		Параметры орбиты				
		Micent 200		Высота,		Наклонение,	Период		
8				перигей	апогей	градусы	повторяемости ² ,		
Skylab-4 (орбита.	льная станция)	05/1973 - 02/1974	20847	422	437	130	-		
GEOS-3		04/1975 - 12/1978	341	817	858	115	-		
SFASAT		07/1978 - 09/1978	2300	761 765		(5 109	17		
SLASAI		09/1978 - 10/1978	2300	/01	705	100	3		
CFOS AT	геодезическая программа	03/1985 - 11/1986	635	775	770	108.1	~23		
GEOSAI	изомаршрутная программа	11/1986 - 12/1989	033 773		119	100,1	17		
ГЕОИК 1¹ (Косм	10c–1660)	07/1985 - 10/1986	1500	1482	1525	73,6	-		
ГЕОИК 2¹ (Косм	oc-1732)	03/1986 - 03/1986	1500	1480	1525	73,6	-		
ГЕОИК 3¹ (Косм	oc-1803)	12/1986 - 12/1987	1500	1497	1504	82,6	-		
ГЕОИК 4¹ (Косм	oc-1823)	03/1987 - 10/1987	1500	1479	1524	73,6	-		
ГЕОИК 5¹ (Косм	oc-1950)	06/1988 - 07/1990	1500	1484	1522	73,6	-		
ГЕОИК 6¹ (Косм	oc-2037)	09/1989 - 09/1990	1500	1485	1524	73,6	-		
· ГЕОИК 7 ¹ (Косм	oc-2088)	08/1990 - 03/1993	1500	1484	1524	73,6	-		
	Фазы А, В	07/1991 - 03/1992	2384	774	775	98,5	3		
	Фаза С	04/1992 - 12/1993					35		
ERS-1	Фаза D	12/1993 - 04/1994					3		
	Φ азы E^1 , F^1	04/1994 - 03/1995					~168		
	Фаза G	04/1995 - 06/1996					35		
TOPEX/Poseidon		08/1992 - 12/2005	2402	1331	1344	66,04	10		
ГЕОИК 8¹ (Косм	oc-2226)	01/1993 – 07/1993	1500	1479	1525	73,6	-		
ГЕОИК 9¹ (Гео- И	ИК)	12/1994 – 07/1995	1500	1481	1526	73,6	—		
ERS-2		04/1995 - 06/2002	2516	784	785	98,6	35		
GFO-1		02/1998 - 10/2008	410	786	788	108,1	17		
Lagan 1	изомаршрутная программа	12/2001 - 02/2009	500	1227	1007 1040	66,2	10		
J 85 011-1	геодезическая программа	02/2009 – настоящее время	500	1337	1545	66,042	~406		
ENVISAT		03/2002-04/2012	7991	783	785	98,6	35		
ICESsat		01/2003 – настоящее время	1000	593	610	94	183,8		
CryoSat-1		08.10.2005 – потерян при выводе на орбиту	650	72	20	92	~369		
OSTM/Jason-2		06/2008 – настоящее время	510	1324	1335	66.04	10		
CryoSat-2		04/2010 – настоящее время	720	71	17	92.0	~369		
HaiYang-2A	изомаршрутная программа	09/2011	512	0(2)(0(5	00.2	14		
(HY-2A)	геодезическая программа	08/2011 – настоящее время	513	963.6	965	99.3	~168		
САДКО (Poseido	on-2)	12/2011- ошибка вывода на орбиту	1500	13	47	73.6	17		

1 – геодезические программы (для российских программ в скобках указан спутник-носитель)

² – для изомаршрутных программ

Четвертая выездная Школа-семинар «Спутниковые методы и системы исследования Земли» Таруса, 19-25 февраля 2013 г.

📕 💿 2013, ГЦ РАН, ИКИ РАН, С.А. Лебедев

Высота морской поверхности Спутниковая альтиметрия

H_{dt}

Помимо этого спутниковая альтиметрия позволяет анализировать:

- амплитуду скорости приводного ветра
- высоты волн
- состояние подстилающей поверхности

1.00 высота геоида или эквипотенциальная поверхность гравитационного поля Земли высота орбиты спутника высота спутника над поверхностью моря высота морской поверхности с учетом ряда поправок (dH_i) , связанных с прохождением радиосигнала через атмосферу, инструментальными ошибками и состоянием подстилающей поверхности: *H_{ssh}=H_{orb} – H_{alt} – Σ dH_i* динамическая топография отклонения морской поверхности относительно геоида: $H_{dt} = H_{ssh} - H_g$

Четвертая выездная Школа-семинар «Спутниковые методы и системы исследования Земли» Таруса, 19-25 февраля 2013 г. © 2013, ГЦ РАН, ИКИ РАН, С.А. Лебедев

Альтиметрическая программа спутника **ICESat (Ice, Cloud and land Elevation Satellite)**

Geoscience Laser Altimeter System (GLAS)

Четвертая выездная Школа-семинар «Спутниковые методы и системы исследования Земли» Таруса, 19-25 февраля 2013 г.

Альтиметрическая программа спутника CryoSat

SAR Interferometer Radar Altimeter (SIRAL)

Будущие программы спутниковой альтиметрии

Программа		Время активной работы, <i>месяц/год</i>	Масса, кг	Параметры орбиты				
				Высота,		Наклонение,	Период	
				перигей	апогей	градусы	повторяемости ² ,	
SARAL/Altika		планируется на 12/2012	600	800		98.705	35	
HaiYang-2B	изомаршрутная программа	H HOLINWOTOG HO 12/2012	512	063.6	965	99.3	14	
(HY-2B)	геодезическая программа	планируется на 12/2012	515	903.0			~168	
Sentinel-3A Ocean		планируется на 06/2013	2300	693		98.6	35	
Jason-3		планируется на 2014	500	1336		66.0	10	
HaiYang-2C	изомаршрутная программа		513	963.6	965	99.3	14	
(HY-2C)	геодезическая программа	планируется на 2015					~168	
Jason-CS		планируется на 2017	500	1336		66.0	10	
Hai Yang-2D	изомаршрутная программа	планируется на 2019	512	062.6	065	00.2	14	
(HY-2D)	геодезическая программа		515	905.0	905	99.0	~168	
SWOT (Surface	Water and Ocean Topography)	планируется на 2019	500	1336		66.0	10	
Sentinel-3C/D		планируется на 2021	2300	693		98.6	35	
GFO-2		планируется на 2021	410	786	788	108,1	17	

¹ — геодезические программы (для российских программ в скобках указан спутник-носитель)

² – для изомаршрутных программ

Альтиметрическая программа спутника SWOT (Surface Water Ocean Topography)

Точность расчета высоты орбиты основные программы альтиметрических

измерений

Четвертая выездная Школа-семинар «Спутниковые методы и системы исследования Земли» Таруса, 19-25 февраля 2013 г. © 2013, ГЦ РАН, ИКИ РАН, С.А. Лебедев

Основные типы датчиков и точность измерения высоты морской поверхности

Альтиметр	Спутник носитель	Время активной работы (месяц/год)	Пространственное разрешение, <i>(м)</i>	Точность, (см)
TOPEX NRA	TOPFY/Poseidon	08/1992 - 01/2006	700	1,7
Poseidon-1	TOT EAT OSCIUM	00/1//2 - 01/2000	700	3
RA	ERS-2	04/1995 - 06/2002	530	5,5
GFO-RA	RA GFO-1 02/1998 – 09/200		570	3,5
Poseidon-2	Jason-1	12/2001 – настоящее время	700	1,7
RA2	ENVISAT	03/2002 - 05/2012	540	4,5
Poseidon-3	Jason-2	06/2008 – настоящее время	700	1,7

나는 요

Четвертая выездная Школа-семинар «Спутниковые методы и системы исследования Земли» <u>Таруса, 19-25 февраля 2013 г.</u>

Высота морской поверхности

Уровень моря Климатическая изменчивость

Четвертая выездная Школа-семинар «Спутниковые методы и системы исследования Земли» Таруса, 19-25 февраля 2013 г.
© 2013, ГЦ РАН, ИКИ РАН, С.А. Лебедев

Уровень моря Климатическая изменчивость

Уровень моря Динамическая топография

Климатические изменения стока реки Дунай и уровня Черного моря

Климатические изменения стока реки Дон и уровня Азовского моря

Климатические изменения стока реки Волга и уровня Каспийского моря

Иствертая выездная Школа-семинар «Спутниковые методы и системы исследования Земли» Таруса, 19-25 февраля 2013 г. © 2013, ГЦ РАН, ИКИ РАН, С.А. Лебедев

Уровень моря. Цунами

Эц_{ар},

© 2013, ГЦ РАН, ИКИ РАН, С.А. Лебедев

Амплитуда волны цунами, рассчитанная по модели (верхний рисунок) и изменчивость уровня моря вдоль треков спутника Jason-1 (нижний рисунок) после подводного землетрясения в Индийском океане возле северозападного берега острова Суматры (Индонезия), произошедшего 26 декабря 2004 года

Четвертая выездная Школа-семинар «Спутниковые методы и системы исследования Земли» Таруса, 19-25 февраля 2013 г.

Уровень моря. Цунами

 Хонсю (Япония), произошедшего
 0
 5
 10

 11 марта 2011 года
 Latitude (deg)

 Четвертая выездная Школа-семинар «Спутниковые методы и системы исследования Земли»

 Таруса, 19-25 февраля 2013 г.

📕 💿 2013, ГЦ РАН, ИКИ РАН, С.А. Лебедев

Уровень и температура поверхности моря Явления *El Niño* and *La Niña*

🕻 📕 🛛 © 2013, ГЦ РАН, ИКИ РАН, С.А. Лебедев

Уровень моря Планетарные волны

Уровень моря Сезонная и межгодовая изменчивость

Сезонные изменения стерического уровня Мирового океана по данным World Ocean Atlas 2005 (Levitus) (синяя линия) и данным гравиметрической миссии спутника GRACE (красная линия), усредненные по акватории северного полушария

Изменчивость уровня моря рассчитанного по данным альтиметрических измерений спутников Jason-1/2 (пунктирная линия), стерического уровня, рассчитанного по данным профилирующих буев Арго (синяя линия), и уровня, рассчитанного по данным гравиметрической миссии спутника GRACE (красная линия) с 2005 по 2010 гг.

Четвертая выездная Школа-семинар «Спутниковые методы и системы исследования Земли» Таруса, 19-25 февраля 2013 г.

📕 💿 2013, ГЦ РАН, ИКИ РАН, С.А. Лебедев

Скорость и направление приводного ветра Спутниковая скаттерометрия

Геометрия обзора: (a) – сккатерометра SASS с фиксированным угловым положением антенн относительно направления движения спутника SEASAT и (б) – сккатерометра SeaWinds спутников QuikSCAT и ADEOS-II, осуществляющего коническое сканирование двумя узкими лучами

Четвертая выездная Школа-семинар «Спутниковые методы и системы исследования Земли» Таруса, 19-25 февраля 2013 г. © 2013, ГЦ РАН, ИКИ РАН, С.А. Лебедев

Основные типы датчиков и точности измерения параметров приводного ветра

Датчик	Спутник носитель	Время активной работы, <i>месяц/год</i>	Полоса обзора	Пространственн ое разрешение	Точность			и вса,
					Скорость ветра, <i>м/</i> с	Направление ветра	Диапазон измерений, <i>м/</i> с	Покрытие поверхност Земли за 24 ча %
SASS	SEASAT	07/1978 – 10/1978	500 x 2	50 x 50	1,6	17	316	-
AMI	ERS-1	07/1991– 06/1996	475	50 x 50	1,5	20	114	< 41
	ERS-2	04/1995 - 06/2002						
NSCAT	ADEOS-I	10/1996 – 08/1997	600 x 2	25 x 25	1,3	17	330	78
SeaWinds	QuikSCAT	06/1999 – 11/2009	1900	12,5 x 25	1	20	320	90
	ADEOS-II	12/2002 - 10/2003	1000					
ASCAT	MetOp-1	10/2006 – настоящее время	550 x 2	25 x 25	2	20	424	82
		1			-	-	-	

Четвертая выездная Школа-семинар «Спутниковые методы и системы исследования Земли» Таруса, 19-25 февраля 2013 г.

🗳 💿 2013, ГЦ РАН, ИКИ РАН, С.А. Лебедев

Скорость приводного ветра

Четвертая выездная Школа-семинар «Спутниковые методы и системы исследования Земли» Таруса, 19-25 февраля 2013 г.

📕 💿 2013, ГЦ РАН, ИКИ РАН, С.А. Лебедев

Скорость приводного ветра Тропические ураганы

Четвертая выездная Школа-семинар «Спутниковые методы и системы исследования Земли» Таруса, 19-25 февраля 2013 г. © 2013, ГЦ РАН, ИКИ РАН, С.А. Лебедев

Скорость приводного ветра

© 2013, ГЦ РАН, ИКИ РАН, С.А. Лебедев

Таруса, 19-25 февраля 2013 г.

Поле приводного ветра

Интенсивность отраженного сигнала (а) и поле приводного ветра (б) у побережья Калифорнии по данным ASAR изображения спутника ENVISAT за 20 января 2006 года

Поле приводного ветра

Бора в Адриатическом море по данным SAR изображения спутника ERS-2 за 17 февраля 2003 года

📕 💿 2013, ГЦ РАН, ИКИ РАН, С.А. Лебедев

Комплексный спутниковый анализ Тропические ураганы

Высоты ветровых волн

Ки Четвертая выездная Школа-семинар «Спутниковые методы и системы исследования Земли» Таруса, 19-25 февраля 2013 г. © 2013, ГЦ РАН, ИКИ РАН, С.А. Лебедев

Поле ветровых волн

Интенсивность отраженного сигнала (а) и поле ветровых волн (б) у побережья Калифорнии по данным ASAR изображения спутника ENVISAT за 20 января 2006 года

Состояние подстилающей поверхности по данным радиолокационных изображений

Проявление мелкомасштабных вихрей на РЛИ за счет «сликового» механизма: мелкомасштабные вихревые кластеры в Балтийском море северозападнее о-ва Готланд.

Фрагмент РЛИ SAR ERS-2, полученного 21.06.2009 в 09:47 UTC с разрешением 75 м

📕 💿 2013, ГЦ РАН, ИКИ РАН, С.А. Лебедев

Антропогенные нефтяные загрязнения

Природные нефтяные загрязнения

Поверхностное проявление внутренних волн

Поверхностные проявления внутренних волн на западном шельфе Черного моря по данным ASAR Envisat (75×75 км), полученного 08.06.2010 г. в 08:20 UTC с разрешением в точке 12,5 м

Поверхностное проявление внутренних волн

Обобщенная карта схема распределения поверхностных проявлений внутренних волн, выявленных по-**Данным** спутниковой радиолокации по данным **ASAR Envisat B** западной части Черного моря (2009-2010 **rr**)

Четвертая выездная Школа-семинар «Спутниковые методы и системы исследования Земли» Таруса, 19-25 февраля 2013 г. © 2013, ГЦ РАН, ИКИ РАН, С.А. Лебедев

Морской лед. Источники информации

NOAA-19 AVHRR Image of Cape Adare (Adare Peninsula, Ross Sea) on 13-Nov-2011

DMSP SSM/I Image of Antarctic on 15-Jul-2000

- ИК радиометрия
- СВЧ радиометрия
- Сканеры видимого диапазона и фотокамеры
- РСА изображения
- Скаттеромеория
- Альтиметрия

IKONOS Image of Cape Denison (Commonwealth Bay) on 31-Jan-

2001 23:20 UTC

QuikSCAT backscatter images southern hemispheres on December 2003

Jason-2, Sigma-0 (Ku), Cycle 49 – from 31-Oct-2009 to 09-Nov-2009

Четвертая выездная Школа-семинар «Спутниковые методы и системы исследования Земли»

Envisat ASAR Imagery the Amundsen Sea on 2011-11-12

08:55:25 UTC

© 2013, ГЦ РАН, ИКИ РАН, С.А. Лебедев

Таруса, 19-25 февраля 2013 г.

Морской лед. Площадь

Площадь морского льда в Арктике (верхний рисунок) и в Антарктике (левый рисунок) в сентябре 2012 года по данным дистанционного зондирования. Желтой линией показа средняя граница сплоченного льда за период 1979–2010 для Арктики и 1979–2000 для Антарктики

Четвертая выездная Школа-семинар «Спутниковые методы и системы исследования Земли» Таруса, 19-25 февраля 2013 г.

Морской лед. Климатические изменения

Межгодовая изменчивость средней за сентябрь площади морского льда по данным SMMR и SSM/I за период с ноября 1978 по октябрь 2012 года.

Величина тренда составляет -91,6 10³ км²/год для Арктики (красная линия) и + 14,7 10³ км²/год для Антарктики (синяя линия).

Четвертая выездная Школа-семинар «Спутниковые методы и системы исследования Земли» Таруса, 19-25 февраля 2013 г.

💶 💿 2013, ГЦ РАН, ИКИ РАН, С.А. Лебедев

Толщина ледового покрова Арктики

Четвертая выездная Школа-семинар «Спутниковые методы и системы исследования Земли» Таруса, 19-25 февраля 2013 г.

🌋 📕 💿 2013, ГЦ РАН, ИКИ РАН, С.А. Лебедев

Толщина ледового покрова Арктики

Толщина ледового покрова Арктики в январе-феврале 2011 года по данным SAR Interferometer Radar Altimeter (SIRAL) спутника CryoSat

Четвертая выездная Школа-семинар «Спутниковые методы и системы исследования Земли» Таруса, 19-25 февраля 2013 г.

📕 💿 2013, ГЦ РАН, ИКИ РАН, С.А. Лебедев

Морской лед

Ледовая обстановка в районе ледостойкой нефтедобывающей платформы Д-6: а — фрагмент РЛИ ASAR Envisat на 9.02.2010 г. Звездочкой отмечена платформа Д-6; б — карта ледяного покрова юго-восточной части Балтийского моря на данное число (http://www.smhi.se)

Вынос льда Вислой. Фрагмент изображения ASAR Envisat, полученного на HH-поляризации 27.01.2010 г.

Комплексный спутниковый мониторинг

Четвертая выездная Школа-семинар «Спутниковые методы и системы исследования Земли» Таруса, 19-25 февраля 2013 г. © 2013, ГЦ РАН, ИКИ РАН, С.А. Лебедев

Комплексный спутниковый мониторинг юго-восточной части Балтийского моря (2004-2005)

Четвертая выездная Школа-семинар «Спутниковые методы и системы исследования Земли» <u>Таруса, 19-25 февраля 2013</u> г. © 2013, ГЦ РАН, ИКИ РАН, С.А. Лебедев

Комплексный спутниковый мониторинг юго-восточной части Балтийского моря (2004-2005)

Методы и используемая информация:

- Оперативный мониторинг нефтяных загрязнений на поверхности моря по спутниковым радиолокационным изображениям (ASAR ENVISAT, ESA)
- Анализ метеорологической и спутниковой информации о высоте ветровых волн и скорости ветра (Jason-1, QuikSCAT), необходимой для интерпретации радиолокационных изображений и оценки скорости и направления дрейфа нефтяных пятен
- Э Ежедневный мониторинг поверхности моря по данным спутниковых изображений в инфракрасном и оптическом диапазонах спектра (AVHRR NOAA, MODIS Terra и Aqua)
- Восстановление поля поверхностных течений по последовательности спутниковых инфракрасных и оптических изображений
- Прогноз скорости и направления поверхностных течений и траектории дрейфа обнаруженных нефтяных пятен, выполненный по оперативной численной модели Seatrack Web Шведского института метеорологии и гидрологии

Четвертая выездная Школа-семинар «Спутниковые методы и системы исследования Земли» Таруса, 19-25 февраля 2013 г.

📕 💿 2013, ГЦ РАН, ИКИ РАН, С.А. Лебедев

Комплексный спутниковый мониторинг юго-восточной части Балтийского моря (2004-2005)

Вероятность распространения (%) в течение 48 часов потенциального нефтяного загрязнения с платформы Д-б (верхний рисунок) и в соответствующие сектора (нижний рисунок)

Карта всех нефтяных пятен, обнаруженных в результате анализа РЛИ ASAR ENVISAT и SAR RADARSAT с июля 2004 г. по ноябрь 2005 г.

Комплексный спутниковый мониторинг российского сектора Черного моря

Четвертая выездная Школа-семинар «Спутниковые методы и системы исследования Земли»

© 2013, ГЦ РАН, ИКИ РАН, С.А. Лебедев

Таруса, 19-25 февраля 2013 г.

Комплексный спутниковый мониторинг российского сектора Черного моря

Дешифрирование пленок поверхностно-активных веществ п о данным ASAR Envisat 14 августа 2008 года (ГУ НИЦ «Планета»)

📕 💿 2013, ГЦ РАН, ИКИ РАН, С.А. Лебедев

Комплексный спутниковый мониторинг российского сектора Черного моря

Оперативная

океанология

Спутниковая

океанология

Современные достижения спутниковой океанологии

- Разработка и вывод на орбиту ИСЗ с новыми приборами дистанционного зондирования, например, предназначенных для измерения солености морской поверхности и сезонных вариаций гравитационного поля Земли
- Повышение пространственного разрешения приборов дистанционного зондирования за счет их усовершенствования и модернизации
- Повышение точности расчета параметров состояния морской поверхности за счет совершенствования алгоритмов обработки и верификации данных дистанционного зондирования
- Увеличение объема данных и скорости поступления информации конечному пользователю
- 0 Использование спутниковой информации в решении нового класса задач: батиметрия и бентос на мелководье, морские операции, комплексное региональное управление и др.
- Дистанционное получение информации, получаемой традиционными контактными методами
- Развитие математических моделей ассимиляции данных дистанционного зондирования в термогидродинамических моделях динамики как Мирового океана, так его отдельных акваторий и внутренних морей
- 0 Создание систем комплексного спутникового мониторинга акваторий Мирового океана

Четвертая выездная Школа-семинар «Спутниковые методы и системы исследования Земли» Таруса, 19-25 февраля 2013 г.

© 2013, ГЦ РАН, ИКИ РАН, С.А. Лебедев

Спасибо за внимание

