Гидродинамика Черного моря: бассейновая циркуляция, мезомасштабные и субмезомасштабные вихри

<u>Зацепин А.Г.1</u>

При участии: Баранова В.И.², Елкина Д.Н.¹, Кондрашова А.А.², Коржа

А.О.², Кременецкого В.В.¹, Кубрякова А.А.⁴, Куклева С.Б.³, Мысленкова С.А.⁵, Островского А.Г.¹, Паки В.Т.², Пиотуха В.Б.¹, Подымова О.И.³, Подуфалова А.П.², Сильвестровой К.П.¹, Станичного С.В.⁴, Соловьева Д.М.⁴ и других...

¹ Институт океанологии им. П.П. Ширшова РАН, Москва

² Атлантическое отделение Института океанологии им. П.П. Ширшова РАН, Калининград

³ Южное отделение Института океанологии им. П.П. Ширшова РАН, Геленджик

⁴ Морской гидрофизический институт НАН, Севастополь, Украина

⁵ Московский государственный университет, Россия

Гидрологическая структура Черного моря

Бассейновая циркуляция и мезомасштабная динамика вод Черного моря

Международный дрифтерный эксперимент в Черном море (1999-2003, запущено более 50 дрифтеров)

Журбас, Зацепин и др., 2004; Poulain, Barbatini, Motyzhev, Zatsepin, 2005 Мезомасштабная вихревая динамика вод в Черном море.

Гинзбург, Зацепин, Кременецкий, Пиотух, 2008

Дрифтерный сегмент буйковой сети (1979 – н.в.)

Фрагменты траекторий дрифтеров, захваченных вихрями

Основные результаты дрифтерного эксперимента в Черном море(1999-2003 гг.)

- 1. Кинетическая энергия флуктуационной составляющей поля течений меньше кинетической энергии среднего течения (примерно в 1.5 раза).
- Крутой континентальный склон не является строгим барьером для водообмена между прибрежной (шельфовосклоновой) зоной и глубоководной частью моря. Дрифтеры участвующие в вихревом движении перемещаются с шельфа в центральную часть моря и наоборот.
- Горизонтальное перемешивание вод в Черном море, осуществляемое мезомасштабными вихрями, имеет примерно тот же временной масштаб, что и адвекция вод ОЧТ по периметру моря (3-6 месяцев).

Zhurbas, Zatsepin et al., 2004

Бароклинная неустойчивость струйных течений фактор образования мезомасштабных вихрей и рингов

Обсуждаемые вопросы

- Крупномасштабное ветровое воздействие как фактор формирования бассейновой циркуляции вод в Черном море – Основного черноморского течения (ОЧТ).
- Мезомасштабные (синоптические) вихри в Черном море как результат бароклинной неустойчивости ОЧТ.
- Субмезомасштабные вихри, механизмы их порождения, влияние на горизонтальный и вертикальный обмен на узком российском шельфе Черного моря.

Завихренность напряжения трения ветра на поверхности моря как движущая сила бассейновой циркуляции вод (1)

"Горизонтальная неоднородность напряжения трения ветра является основной причиной крупномасштабной циркуляции в окраинных морях" (Штокман 1941, 1945)

В. Б. Штокман (1909-1968)

Среднегодовая амплитуда скорости ветра (м/с) над Черным морем (доминируют ветра северных румбов)

Завихренность напряжения трения ветра на поверхности моря как движущая сила бассейновой циркуляции вод (2)

 $w_E = \frac{curl \tau}{f\rho}$ - скорость экмановской накачки

Преимущественно положительная (отрицательная) завихренность ветра на поверхности моря создает дивергенцию (конвергенцию) интегрального экмановского переноса и связанный с ней апвеллинг (даунвеллинг) в центральной части моря. В результате возникает горизонтальный градиент давления, обусловленный наклоном моря и изопикнических поверхностей, который уровня уравновешивается силой Кориолиса и поддерживает бассейновую геострофическую циркуляцию вод.

Скорость экмановской накачки (**W**_E*10⁶ м/с) на поверхности Черного моря по данным NCEP

 $\textbf{W}_{\text{E}} = \textbf{curl} \tau / (\rho \textbf{f}) = - \nabla_{\text{H}} \, \textbf{M}_{\text{E}} \, / \rho_{\text{w}}$

Положительные величины **W**_E (красный) – циклоническая завихренность ветра

Отрицательные величины W_{E} (синий) – антициклоническая завихренность ветра

Геострофические течения, возбуждаемые положительной экмановской накачкой в двуслойной жидкости

fU=1/ $\rho \partial P/\partial y$ - геострофический баланс U₁=g/f $\partial \xi/\partial y \cong - (\Delta \rho g/f \rho_1) \partial h_1/\partial y$ U₂=(g/f ρ)($\Delta \rho \partial h_1/\partial y + \rho_1 \partial \xi/\partial y$) $\cong 0$

Внутригодовая изменчивость скорости экмановской накачки <**W**_E>*10⁶ м/с (а) и вдольбереговой компоненты геострофической скорости <**V**_a> м/с на поверхности (б)

Коэффициент корреляции между <**W**_E> и <**V**_g> как функция временного интервала осреднения **W**_E перед выполнением судового разреза

Коэффициент корреляции достигает максимума при временном интервале осреднения близком к одному месяцу. Этот временной период можно рассматривать как характерное время приспособления ОЧТ к изменяющемуся уровню экмановской накачки

Пример внутригодовой изменчивости напряжения трения ветра <τ> н/м² (синяя кривая) и скорости экмановской накачки <**W**_E>*10⁶ м/с (черная кривая)

Лабораторное моделирование влияния периодически изменяющегося ветра на режим вдольберегового течения в двуслойной вращающейся жидкости

1-вращающаяся платформа; 2 – цилиндрический бассейн; 3 – откидная крышка; 4 –наклонное дно; 5 –бортик; 6 – воздуходувки; 7 –боковая стенка; 8 – система заполнения; 9 – видеокамера.

Схема бароклинной циркуляции возбуждаемой положительной экмановской накачкой: (а) – вид сбоку; (б) – вид сверху. Значения определяющих безразмерных параметров для Черного моря и лабораторной модели

Безразмерные	Черное	Лабораторная
параметры	море	модель
$\theta = h_0 / H$	(0.5-1)*10-1	(0.7-1.4)*10-1
$Bu_0 = (R_d/L_o)^2$	(0.6-2)*10-2	~10-2
L_S / R_d	0.5-5	1-8
$E = \nu/(f h_0^2)$	(0.01-1)*10-4	~10-3
$Fr_{Rim} = U_{Rim} / (g' h_0)^{0.5}$	(0.4-2.0)*10-1	(0.3-3.0)*10-1

Неустойчивость прибрежного течения, возбуждаемого экмановской накачкой, на стадии его релаксации

на 4-й день релаксации

Влияние изменчивости экмановской накачки на ОЧТ и мезомасштабную вихревую динамику

Сильная экмановская накачка и обусловленная ей интенсификация ОЧТ (ноябрь 2000)

Zatsepin et al., 2002

Слабая экмановская накачка, деградация ОЧТ и образование мезомасштабных вихрей (октябрь 2001)

Zatsepin et al., 2002

Влияние режима течения на распределение зоопланктона

Использование спутниковой альтиметрии для изучения крупно- и мезомасштабной динамики Черного моря (*Кубряков, Станичный,* 2011-2013)

Спутниковая альтиметрия – единственный инструмент, позволяющий регулярно, не зависимо от погодных условий восстанавливать циркуляцию всей акватории Черного моря

С 1992 года точность альтиметров достигает ~ 2 см.

Альтиметр измеряет высоту прибора над морской поверхностью, связанную с динамической топографией h, градиенты которой определяют поверхностную геострофическую циркуляцию бассейна:

$$\mathbf{u}_{\mathbf{g}} = -\frac{\mathbf{g}}{\mathbf{f}}\frac{\partial h}{\partial \mathbf{y}}$$
 $\mathbf{v}_{\mathbf{g}} = \frac{\mathbf{g}}{\mathbf{f}}\frac{\partial h}{\partial \mathbf{x}}$

Абсолютная динамическая топография

По градиентам абсолютной динамической топографии рассчитываются геострофические скорости течений на поверхности

$$u_{g} = -\frac{g}{f} \frac{\partial h}{\partial y} \qquad v_{g} = \frac{g}{f} \frac{\partial h}{\partial x}$$

Пример наложения скорости поверхностных течений рассчитанных по альтиметрии на спутниковое изображение ТПО в С-В части Черного моря

Межгодовая изменчивость интегральной завихренности скорости ветра и средней кинетической энергии течений

VS

Средняя кинетическая энергия течений (МКЕ):

 $MKE = \frac{1}{2}(<u>^{2}+<v>^{2})$

Завихренность скорости

ветра

 $\left| curl_z w = \frac{\partial v_w}{\partial x} - \frac{\partial u_w}{\partial y} \right|$

[Шокуров М.В., МГИ]

Time lag = 24 days. 80 low-pass filter. K1=0.84 x 10⁻⁶ curl_(w) 10 MKE*0.001 8 6 K=0.84 4 2 O -2 -4 -6 95 97 00 02 05 07 10

Автоматическая идентификация мезомасштабных вихревых образований

В каждой точке стационарного поля аномалий скорости запускается виртуальная частица и рассчитывается её суммарный угол отклонения (WA). "winding angle" – "угол намотки"

 $WA = \sum_{j=2}^{N-1} \alpha_j$

Метод "winding angle" идентификации вихря [Chagneux et al., 2008]

Частицы с **WA > 360°** описывают замкнутый контур уровня

находятся в вихре

Примеры полей с идентифицированными вихревыми образованиями

Структура мезомасштабного вихря

Антициклонический вихрь в поле скорости в районе г. Севастополь

Тот же вихрь в поле уровня

Вихревая кинетическая энергия

Вихревая кинетическая энергия рассчитывалась как сумма энергии отдельных вихрей, деленная на площадь Черного моря

Средние за 1992-2010 года поля вихревой энергии, рассчитанные разными методами: суммированием энергии отдельных вихрей (слева) и как дисперсия средней кинетической энергии (справа)

Статистика вихрей

За период 1992-2011 года с временем жизни >4 недель, радиусом >=20 км идентифицировано **847 вихрей** (460 циклонов и 387 антициклонов)

Траектории перемещения мезомасштабых вихрей

всех вихрей с временем жизни более 30 недель

Плотность вероятности для радиуса вихря (км) (слева), и для максимальной орбитальной скорости частиц (м/с) в вихре (справа),

Выводы (1)

Вариации экмановской накачки с периодом более одного месяца могут приводить к изменению режима течения от доминирования вдольбереговой струи ОЧТ при сильной накачке к доминированию мезомасштабных вихрей при слабой накачке. Вследствие внутригодовой изменчивости экмановской накачки (ее усиления зимой и ослабления летом) для зимы более типично доминирование вдольбереговой струи ОЧТ, а для лета - доминирование мезомасштабных вихрей. Тем не менее, смена режимов течения может происходить многократно в годовом цикле.

Выводы (2)

С помощью спутниковой альтиметрии исследованы статистические характеристики мезомасштабных вихрей с радиусом более 20 км и временем жизни более 4 недель в период с 1992 по 2011 гг. Установлено, что число циклонических вихрей превышает число антициклонических, однако характерные размеры и кинетическая энергия у циклонов меньше, чем у антициклонов. Радиус вихрей изменяется в диапазоне Показано, что в сезонном цикле антициклоны в основном образуются в период ослабления ветровой накачки и ОЧТ (летом), тогда как циклоны – в период усиления ветровой накачки и ОЧТ (зимой). Существует заметная межгодовая изменчивость средней и вихревой кинетической энергии течений, положительно коррелирующая с ветровой накачкой циркуляции.

Выводы (3)

Режим влияет на течения пространственное распределение зоопланктона. При интенсивном ОЧТ подавленном поперечном обмене возникает Ν неравномерное распределение зоопланктона С обилием прибрежных видов в шельфовой зоне и открытоморских видов в глубоководной части моря. При слабом и меандрирующем ОЧТ, в условиях интенсивного поперечного обмена распределение зоопланктона является более равномерным: прибрежные наблюдаются не только в шельфовой, но и в ВИДЫ глубоководной части моря и наоборот, открытоморские – не только в глубоководной, но и в шельфовой зоне.

Субмезомасштабные вихри на кавказском шельфе Черного моря и механизмы их генерации

Субмезомасштабные вихри на шельфе Черного моря

Фотографический снимок суб-мезомасштабного циклонического вихря в шельфовой зоне Черного моря, проявляющегося на поверхности воды в виде спиральной сликовой структуры (фотография А.В. Григорьева).

Субмезомасштабные вихри на шельфе Черного моря

Фронтальная зона субмезомасштабного циклонического вихря: центр вихря находится слева вне рисунка, разворот кораблей на якоре показывает направление вращения воды в вихре

Определения

1. Синоптические/мезомасштабные вихри: $R > R_d = NH/f$

<u>Квазигеострофические</u> – **F**_p ≈ **F**_{cor} >> **F**_{cent} , **Ro** = ω/f = 0.1- 0.2 <u>Характерный горизонтальный масштаб -</u> **D** = 2R ~ 100 км <u>Время жизни</u> – месяцы, годы

<u>Один из основных механизмов образования</u> – бароклинная неустойчивость струйных течений (рост и отрыв меандров)

2. Субмезомасштабные вихри: $R < R_d$

<u>Агеострофические, нестационарные:</u> - $F_{cor} \sim F_{cent}$, Ro ~ 1

Характерный горизонтальный масштаб: D ~ 10 км

Время жизни – не вполне известно (несколько суток?)

<u>Механизмы образования</u> – не вполне известны

Краткая история исследований субмезомасштабных вихрей

С 1970-х годов «маленькие» вихри размером 10-30 км часто обнаруживались на спутниковых изображениях в, частности, на периферии струйных течений и синоптических вихрей («сдвиговые вихри» - Федоров, Гинзбург, 1988 «Поверхностный слой океана»).

В 1980-х годов, с появлением радиолокационных спутниковых изображений, стало очевидным, что верхний слой океана изобилует спиральными структурами (Stevenson, 1989 «Oceanography from Space Shuttle).

В 2000 г. в Proc. R. Soc. London опубликована статья Munk et al. «Spirals on the sea» в которой введено понятие новой области исследований – субмезомасштабной океанографии. «Spiral eddies are a manifestation of a sub-mesoscale oceanography which may constitute an important link in the balance of generating and dissipating ocean processes».

.....

.............

Лаврова, Костяной, и др., 2011. Комплексный спутниковый мониторинг морей России; **Каримова, 2012.** Канд. дис. Исслед. субмезомасштаб. вихрей Балтийского, Черного и Каспийского морей по данным спутниковой радиолокации.

Спиральные структуры являются самым массовым элементом циркуляции поверхностных вод, преобладающий знак вращения – циклонический. По-видимому, они охватывают весь ВКС. Характерный размер: 2.5 км в Балтике, 5.5 км в Черном и Балтийском морях. Макс. продолжит. существования наиболее крупных структур: 7-8 суток. Имеется сезонная изменчивость численности (в теплый сезон их

Одна из основных проблем в интерпретации наблюдаемых спиральных вихревых структур – малое число «подспутниковых» наблюдений.

Данный пробел отчасти заполнен измерениями *in situ* на гидрофизическом полигоне ИОРАН в шельфово-склоновой зоне Черного моря в районе г. Геленджик

Схема действующего черноморского подспутникового полигона (июль, 2013 г.)

Методы исследования

- 1) анализ текущей спутниковой информации в инфракрасном и видимом диапазонах спектра (температура и цвет морской воды, спутники серии NOAA, также MODIS-AQUA и MODIS-TERRA);
- 2) квази-мгновенные пространственные съемки поля течений с помощью буксируемого за судном акустического доплеровского профилографа RDI «WorkHorse Mariner ADCP» (300 кГц);
- 3) судовые резрезы в области шельфа континентального склона с регулярным выполнением СТД - станций зондирования (зонд SBE-19Plus фирмы "Sea Bird Electronics");
- 4) долговременные измерения профиля течений в точке с помощью донного ADCP и заякоренного профилографа Аквалог.

Полученные в 2007-2013 данные использованы для выявления субмезомасштабных вихрей и изучения механизмаов их генерации.

Новый автономный зонд-профилограф «Аквалог» на заякоренной буйковой станции

Профилограф «Аквалог – 4» (2009 г.)

Аквалог в рабочем положении на тросовой линии вблизи подповерхностной плавучести

Показания датчика давления профилографа «Аквалог» (Черное море, октябрь 2009). Диапазон глубин 10-240 м, частота зондирований – 12 раз в сутки.

Вдольбереговая скорость течения, данные профилографа «Аквалог» в Черном море 26 июня – 22 августа 2011 г., глубина места – 250 м, частота зондирования – 8 раз в сутки. Черные кривые – изолинии условной плотности. Белая кривая – верхняя граница H₂S зоны - условная плотность 16.2 единицы

Схема формирования 5-10 суточных колебаний

Спектры колебаний энергии течений в верхней части континентального склона (250 м) по данным зондапрофилографа «Аквалог» (годичный ряд)

Пространственная съемка поля скорости течения буксируемым за судном ADCP

Акустический доплеровский профилограф в гондоле перед началом буксировки на корме «Ашамбы» (слева) и в момент буксировки (справа).

Квази-мгновенные распределения числа Россби Ro = ω/f в верхнем перемешанном слое H = 20 м по данным буксировок ADCP в октябре 2007 г.

Статистика

В период 2007-2013 гг. в летне-осенний сезон была сделана 21 съемка поля скорости на акватории полигона с помощью буксируемого за судном ADCP в обтекаемой гондоле. В 16 съемках были обнаружены субмезомасштабные вихри (15 циклонов и 16 антициклонов) в 5 съемках – нет. Вихри, как правило, наблюдались только в верхнем квазиоднородном слое (ВКС), а в термоклине затухали.

Характерный диаметр вихря, эксцентриситет и число Россби:

циклоны – D = 2-4 км; ε =0.75; Ro = 1.4

антициклоны – D = 3-6 км; ε =0.80; Ro = 0.8

Характерная орбитальная скорость – 20-50 см/с

Максимальная зарегистрированная продолжительность существования вихря – 4 суток (антициклон)

МЕХАНИЗМЫ ФОРМИРОВАНИЯ ШЕЛЬФОВЫХ ВИХРЕЙ ПО ДАННЫМ НАБЛЮДЕНИЙ И ИХ ЛАБОРАТОРНОЕ МОДЕЛИРОВАНИЕ

1. ВИХРИ ОТРЫВНОГО ТЕЧЕНИЯ

Усиление ОЧТ и его поджатие к берегу крупными циклоническими вихрями в открытой части моря в сентябре-октябре 2008 г.

Поле скорости в прибрежно-шельфовой зоне Геленджика по данным ADCP-съемок от 27.09 (а) и 28.09 (б). Верхний слой, H=30 м

Пунктиром обозначено приблизительное положение субмезомасштабного антициклонического вихря А1

Северная (а) и восточная (б) составляющие скорости течения на разрезе от 28.09.2008 г. через центр субмезомасштабного антициклонического вихря «А1»

Квазидвуслойная стратификация вод на шельфе

Радиус деформации Россби: $R_d = [g(\Delta \rho / \rho)H]^{0.5} f^{-1} = 8$ км, где $\Delta \rho = 2*10^{-3} c/cm^3$ перепад плотности между слоями, $\rho = 1.0 c/cm^3$ - плотность воды, $g = 10^3$ cm/c^2 – ускорение свободного падения, H = 30 m – толщина верхнего слоя, f $= 10^{-4} c^{-1}$ – параметр Кориолиса.

ПОЛЕ СКОРОСТИ В ШЕЛЬФОВОЙ ЗОНЕ В РАЙОНЕ ГЕЛЕНДЖИКА ПО ДАННЫМ АДСР-СЪЕМОК ОТ 29.09 (в) И 30.09 (г). ВЕРХНИЙ СЛОЙ, Н=30 М

Пунктиром обозначено приблизительное положение субмезомасштабных антициклонических вихрей А1 и А2, а также циклонического вихря Ц1.

Развитие и перемещение прибрежного антициклона «A1»: 28.09.08, 06:59 GMT (a), 29.09.08, 08:25 GMT (б), 30.09.08, 19.22 GMT (в) и 01.10.08, 09:53 GMT (г). Пунктир – положение и размер вихря.

Донная станции с ADCP в немагнитной пирамиде и ее расположение на карте геленджикского района Черного моря

Квазипериодическое образование субмезомасштабных антициклонических вихрей за м. Идокопас на геленджикском шельфе при прижатом к континентальному склону ОЧТ

Восточная составляющая скорости течения измеренная донным ADP на шельфе, на глубине 32 м в районе Голубой бухты с 14 час. 29 сент. до 16 час. 01 окт.

Периодическое образование субмезомасштабных вихрей на шельфе в области отрыва течения и срыв вихрей набегающим потоком

Условия квазипериодического образования вихрей за препятствием и их срыва:

- 1) Плохо обтекаемое тело (*L/D* <2, где *L* длина, а *D* поперечный размер препятствия);
- 2) Re =UD/v ≥ 10² где U скорость в ядре набегающего потока, v кинематическая (эффективная) вязкость;
- 3) St = D/UT ≈ 0.1 0.3 число Струхаля (безразмерная частота срыва, T период срыва) для Re = 200-200000.

Для природного процесса:

 $\boldsymbol{U} \approx 40$ см/с; $\boldsymbol{D} \approx 8$ км; $\boldsymbol{T} \approx 2$ сут.

St = *D/UT* ≈ 0.1 !

Цилиндрический бассейн из оргстекла на вращающейся платформе - а) вид сбоку: 1 - вращающаяся платформа; 2 – бассейн; 3 – палочка с марганцовкой; 4 – полуостров; 5 – видеокамера; б) вид сверху: 1 - палочка с марганцовкой; 2 - полуостров; 3 – контурное циклоническое течение.
ПОСЛЕДОВАТЕЛЬНЫЕ КАДРЫ ВИДЕОСЪЕМКИ ОПЫТА С ОБТЕКАНИЕМ ПОЛУОСТРОВА ЦИКЛОНИЧЕСКИМ ТЕЧЕНИЕМ, ОБРАЗОВАНИЕМ И ОТРЫВОМ ЗАПРЕПЯТСТВЕННЫХ АНТИЦИКЛОНИЧЕСКИХ ВИХРЕЙ

- a) t/T₂ =1, где t время от момента возникновения течения (торможения платформы), а T₂ период вращения платформы после торможения;
- б) t/T₂ = 5 первый вихрь перед отрывом от полуострова;
- в) t/T₂ = 6 отрыв первого вихря и появление второго;
- г) $t/T_2 = 9$ отрыв второго и появление третьего вихря.

Антициклонические вихри (А) маркированы пунктиром. ФИЛЬМ №1

Зависимость числа Струхала (безразмерная частота вихреобразования, St=D/VT) от числа Россби для потока, набегающего на полуостров

* Жирная точка – черноморские данные

ОБТЕКАНИЕ МЫСА АНТИЦИКЛОНИЧЕСКИМ ТЕЧЕНИЕМ: ОТСУТСТВИЕ ПЕРИОДИЧЕСКОГО ВИХРЕОБРАЗОВАНИЯ

ФИЛЬМ №2

Другие серии опытов

<u>Создание вдольберегового течения с помощью</u> ветровой накачки однородной по плотности жидкости

 отсутствие отрыва вихрей в период ветрового воздействия, периодическое вихреобразование за препятствием после выключения ветра в период релаксации циклонического течения и отсутствие периодического вихреобразования при антициклоническом течении.

<u>Опыты с двуслойной жидкостью: генерация</u> <u>вдольберегового течения как изменением скорости</u> <u>вращения платформы, так и ветровой накачкой</u>периодическое вихреобразование за препятствием только в период релаксации циклонического течения.

Опыты в невращающейся жидкости – нет отрыва вихря от препятствия (периодического вихреобразования).

Роль экмановского придонного трения в отрыве запрепятственного вихря

антициклоническое течение

Промежуточные выводы

Явление периодического вихреобразования за мысами и полуостровами наблюдается лишь во вращающейся жидкости в случае затухающей струи циклонического вдольберегового течения,

обтекающего препятствие.

2. Формирование цепочек вихрей в сдвиговом течении

Субмезомасштабные циклоны (СЦ)на периферии мезомасштабного антициклона (А) 08.08.2010

Субмезомасштабные циклонические вихри на спутниковом изображении (08.07.10)

Субмезомасштабные циклоны на периферии мезомасштабного антициклона «А» 25.12.2010.

Вектора скорости поверхностного гестрофического течения (рассчитаные по данным спутниковой альтиметрии) наложенные на спутниковое изображение поверхности С-В части Черного моря в поле концентрации взвешенного вещества

Лаб. эксперимент по исследованию сдвиговой неустойчивости во вращающейся жидкости

Схема лабораторной установки. Вид сбоку: 1 - вращающаяся платформа; 2 – бассейн, заполненный жидкостью; 3 – дифференциально вращающийся диск; 4 – блок питания с регулятором напряжения; 5 – электромотор; 6 – видеокамера. Вид сверху: 3 – диф. вращ. диск; 5 – шкив; 2 - зазор между диском и стенкой бассейна.

Антициклонический сдвиг скорости

Течение на поверхности слоя жидкости, в тех опытах, где вдольбереговое течение было циклоническим, а сдвиг скорости в зазоре - антициклоническим: (а) $Ro_s = 0.6$; (б) $Ro_s = 2.3$. Буквой «А» отмечены антициклоны, которые оконтурены пунктиром.

Циклонический сдвиг скорости

Течения на поверхности слоя жидкости, где сдвиг скорости в зазоре циклонический (Ro_s=-4): (а) - рассчитанные по трассерам (пелеткам) (пунктиром и буквой «Ц» обозначены циклонические вихри, стрелки показывают скорость течения); (б) – визуализированные с помощью тимолового синего индикатора. Вихри оконтурены пунктиром. **ФИЛЬМЫ №№3-4**.

Условие устойчивости сдвигового течения во вращающейся жидкости

Из простых физических соображений (Tritton, Devis 1981) следует, что плоскопараллельное сдвиговое течение во вращающейся жидкости обладает повышенной устойчивостью по сравнению с невращающейся жидкостью, если:

$$f > \partial U / \partial y$$
 (1)

Введем безразмерный параметр:

 $\mathbf{Ro}_{s} = (\partial U/\partial y)/f$ – число Россби

Из (1) следует, что течение более устойчивое при **Ro_s < 1.** При **Ro_s > 1** устойчивость течения понижена и облегчен переход к турбулентности.

Упорядочивание вихревой турбулентной конвекции под влиянием вращения системы (Дикарев, 1983).

Свободная конвекция при Ra = 2*10⁸, Ta = 7*10⁷.

Свободная конвекция при **Ra = 7*10⁷**, **Ta = 6*10⁸**.

ПРОМЕЖУТОЧНЫЕ ВЫВОДЫ

Во вращающейся жидкости в горизонтальном сдвиговом течении генерация вихревых структур происходит преимущественно в условиях циклонического сдвига скорости. Соответственно, формируются циклонические вихри. Наличие точки перегиба на профиле скорости не является обязательным. При этом в невращающейся жидкости ярко выраженных когерентных вихрей не наблюдается и течение имеет турбулентный характер

(В лаб. эксперименте 3000< Re= $\omega R_1 d/\nu$ <30000).

ГЕНЕРАЦИЯ ВИХРЕЙ ПРОСТРАНСТВЕННО-НЕОДНОРОДНЫМ ВЕТРОМ ПРИМЕР НЕОДНОРОДНОГО ВЕТРА НАПРАВЛЕННОГО С БЕРЕГА НА МОРЕ (ВЛИЯНИЕ ОРОГРАФИИ). С-В ЧАСТЬ ЧЕРНОГО МОРЯ, РАДИОЛОКАЦИОННЫЙ СНИМОК (САР) РЕАКЦИЯ УРОВНЯ МОРЯ НА ПРОСТРАНСТВЕННО-НЕОДНОРОДНЫЙ ВЕТЕР, ГЕНЕРАЦИЯ РАЗНОНАПРАВЛЕННЫХ ГЕОСТРОФИЧЕСКИХ ТЕЧЕНИЙ

ГЕНЕРАЦИЯ ВИХРЕЙ ЗА СЧЕТ ПРОСТРАНСТВЕННО-НЕОДНОРОДНОГО ВЕТРОВОГО ВОЗДЕЙСТВИЯ

Схема лабораторной установки: a) — вид сбоку: 1 - вращающаяся платформа; 2 — бассейн из органического стекла с однородной или двухслойной жидкостью; 3 — четыре воздуходувки (красным выделена воздуходувка, направленная по радиусу к центру бассейна; 4 — источник постоянного расхода; 5 — видеокамера; 6 - направление врашения платформы. б) вид сверху: расположение

АНТИЦИКЛОНИЧЕСКИЙ БАРОКЛИННЫЙ ВИХРЬ В ЛАБОРАТОРНОМ БАССЕЙНЕ (СПРАВА) И ПОЛЕ СКОРОСТИ ТЕЧЕНИЯ - ОБРАБОТКА ТРЕКОВ ПЕЛЕТОК (СЛЕВА)

Период вращения платформы - 5 с, толщина слоя соленой воды 5 см, соленость - 10 psu, толщина слоя пресной воды - 2 см, бароклинный радиус деформации - 2.8 см. Радиальный ветер действовал 80 с (16 лаб. сут). Скорость воздушного потока на расстоянии 5 см от сопла воздуходувки - от 3 до 4 м/с. На расстоянии 30 см от сопла скорость воздуха - 1-1,5 м/с. Это соответствует изменению динамической скорости трения в воде от 2 до 0,6 см/с в области под воздушной струей. Данный кадр сделан через 1 лаб. сут. после выключения воздуходувки. ФИЛЬМ №5.

Роль вихрей в формировании неоднородностей распределения пассивной примеси, в ее переносе

Сопоставление данных дрифтерного эксперимента 29-30.09.2013 г. с данными ADCP-съемки поля течения 29.09.2013 г.

Субмезомасштабные

циклонические вихри как

источники локального

апвеллинга

Схема циркуляции вод в прибрежной зоне Черного моря (Геленджик – Джубга) на спутниковом снимке МОДИС-Терра от 25.09.2012.

наложенные на тоже изображение

Исследование циклонического вихря на геленджикском шельфе Черного моря с помощью буксируемого ADCP

Сигнал обратного акустического рассеяния на буксировочных галсах

Профиль концентрации хлорофилла_а, построенный по результатам обработки и анализа проб воды, отобранных батометрами в прибрежной части Черного моря в районе г. Геленджик 01.10.2012.

Виден максимум концентрации на глубине 20 м, соответствующий положению слоя скачка температуры и максимума звукорассеяния.

Горизонтальная (вверху) и вертикальная (внизу) циркуляция вод и баланс действующих сил в субмезомасштабном циклоническом вихре

Развивающийся вихрь - сумма центробежной (F_ц) и Кориолисовой (F_к) сил превышает силу давления (F_д) Затухающий вихрь - сила давления (F_д) превышает сумму центробежной (F_ц) и Кориолисовой (F_к) сил.

Пример субмезомасштабного циклона в поле температуры у южного берега Крыма (Landsat-8)

2013-10-13

Оценка скорости апвеллинга в ядре циклонического субмезомасштабного вихря

w = (2H/R)dR/dt

Если $\mathbf{R} = 2$ км = 2*10⁵ см, $d\mathbf{R}/dt = 1$ км/сут ≈ 1 см/с, $\mathbf{H} = 20$ м = $=2*10^3$ см, то $\mathbf{w} = 0.02$ см/с.

Это большая величина, если учесть, что при интенсивном прибрежном ветровом апвеллинге в Черном море вертикальная скорость имеет тот же порядок величины!

Основные выводы

1. Установлено, что субмезомасштабные вихри, как правило, присутствуют на черноморском шельфе, причем встречаемость вихрей циклонического или антициклонического знака приблизительно одинакова. Циклоны имеют диаметр 2-4 км и они приблизительно в 1.5 раза меньше антициклонов, характерный диаметр которых составляет 3-6 км. Шельфовые вихри являются агеострофическими, изначально характеризуются высокими значениями числа Россби (Ro=0.4-3), большими орбитальными скоростями вращения (20-50 см/с) и короткой продолжительностью существования (не более нескольких суток).

2. Методом лабораторого моделирования установлено, что во вращающейся жидкости существенно расширяются возможности формирования упорядоченных вихревых структур по сравнению с невращающейся жидкостью. При этом вращение системы делает различными условия образования вихрей циклонического и антициклонического знака. Так, благодаря сдвиговой неустойчивости вдольберегового течения, в основном происходит образование циклонов, и, наоборот, при обтекании мысов и полуостровов, а также вследствие пространственно-неоднородного ветрового воздействия, образуются преимущественно антициклоны.

Земли и способствует образованию 3.Вращение когерентных динамических структур интенсивных циклонических и антициклонических субмезомасштабных вихрей «ламинаризирует» горизонтальный пограничный слой на шельфе. Это усложняет кросс-шельфовый обмен, предсказуемым и способствует делает его мало собиранию взвеси (загрязнений) в локализованных областях, а также ее быстрому направленному переносу на расстояния, соизмеримые с диаметром вихрей (2-6 км).

Спасибо за внимание!

Пример обработки записи ADCP за декаду с 25.09 по 05.10.10

Гистограмма амплитуды вдольбереговой скорости

Число N периодов знакопостоянства вдольбереговой скорости в зависимости от продолжительности периода Т

Вдольбереговая скорость в периоды знакопостоянства скорости в зависимости от продолжительности периода

- а) средние значения вдольбереговой скорости;
- б) максимальные значения вдольбереговой скорости.

Красная – северо-западное, синяя – юго-восточное направление.

Прогрессивные векторные диаграммы за период 05.2010 -04.2011

Схема формирования вихревого пограничного слоя на узком черноморском шельфе

Роль внутреннего шельфа в диссипации энергии ОЧТ и мезомасштабных вихрей

Результат: диссипация кинетической энергии на узком внутреннем шельфе может быть на порядок больше, чем на глубоководной части Черного моря

Заключение

Суб-мезомасштабная (1-10 км) и короткопериодная (1-100 часов) изменчивость динамики вод на узком шельфе Черного моря в районе г. Геленджика является предметом исследований, проводимых ИО РАН на протяжении последних 5 лет. Путем инструментальных измерений, а также с помощью спутниковой информации высокого разрешения, установлено, что в значительной степени она связана с берега формированием и перемещением вдоль шельфовых субмезомасштабных вихрей, диаметр которых обычно не превышает 6-8 км. Эти вихри не являются квази-геострофическими, а время их жизни не превышает нескольких суток, поэтому их можно считать динамическими структурами. Они диссипативными высоко водообмен поперек шельфа, способствуя очистке производят прибрежной зоны от естественного и антропогенного загрязнения.

Формирование шельфовых вихрей происходит, главным образом, под влиянием внешней циркуляции, т.е. течений над континентальным склоном и в глубоководной зоне. Наиболее распространенными физическими механизмами формирования вихрей на шельфе являются, как минимум, два. Один из них обусловлен сдвиговой неустойчивостью вдольберегового течения. Это подтверждается тем фактом, что при юговдольбереговом шельфе течении на доминируют восточном циклонические вихри, а при северо-западном - антициклонические. Другой обтеканием c орографических связан механизм И топографических неоднородностей. При этом "ложбинах" береговой черты, в зоне отрыва струи вдольберегового течения от мысов, формируются шельфовые периодически интенсивные вихри. Существуют и другие механизмы генерации шельфовых вихрей.

B прибрежно-шельфовой зоне существует осциллирующий динамический пограничный слой. При этом, благодаря трению о дно в малых глубин (10-30 м), осуществляется эффективная области диссипация кинетической энергии течений. В более глубоководной зоне сильной плотностной стратификации - сезонного наличия из-за термоклина (в теплый период года) и основного пикно-халоклина (круглогодично) скорость течения в придонном слое невелика и По кинетической диссипация энергии резко уменьшается. предварительным оценкам интегральная диссипация кинетической энергии течений в прибрежно-шельфовой зоне значительно превышает интегральную диссипацию в глубоководной части Черного моря. Поэтому роль этой узкой, зоны в диссипации кинетической энергии общей и мезомасштабной циркуляции вод может быть определяющей

Заключение

Суб-мезомасштабная (1-10 км) и короткопериодная (1-100 часов) изменчивость динамики вод на узком шельфе Черного моря в районе г. Геленджика является предметом исследований, проводимых ИО РАН на протяжении последних 5 лет. Путем инструментальных измерений, а также с помощью спутниковой информации высокого разрешения, установлено, что в значительной степени она связана с берега формированием и перемещением вдоль шельфовых субмезомасштабных вихрей, диаметр которых обычно не превышает 6-8 км. Эти вихри не являются квази-геострофическими, а время их жизни не превышает нескольких суток, поэтому их можно считать Они динамическими структурами. высоко диссипативными водообмен поперек шельфа, способствуя очистке производят прибрежной зоны от естественного и антропогенного загрязнения.

Формирование шельфовых вихрей происходит, главным образом, под влиянием внешней циркуляции, т.е. течений над континентальным склоном и в глубоководной зоне. Наиболее распространенными физическими механизмами формирования вихрей на шельфе являются, как минимум, два. Один из них обусловлен сдвиговой неустойчивостью вдольберегового течения. Это подтверждается тем фактом, что при юговдольбереговом шельфе восточном течении на доминируют циклонические вихри, а при северо-западном - антициклонические. Другой связан с обтеканием орографических механизм И топографических неоднородностей. При этом "ложбинах" береговой черты, в зоне отрыва струи вдольберегового течения от мысов, периодически формируются интенсивные шельфовые вихри. Существуют и другие механизмы генерации шельфовых вихрей.

прибрежно-шельфовой зоне существует осциллирующий B динамический пограничный слой. При этом, благодаря трению о дно в малых глубин (10-30 м), осуществляется эффективная области диссипация кинетической энергии течений. В более глубоководной зоне из-за наличия сильной плотностной стратификации - сезонного термоклина (в теплый период года) и основного пикно-халоклина (круглогодично) скорость течения в придонном слое невелика и По кинетической энергии диссипация резко уменьшается. предварительным оценкам интегральная диссипация кинетической энергии течений в прибрежно-шельфовой зоне значительно превышает интегральную диссипацию в глубоководной части Черного моря. Поэтому роль этой узкой, зоны в диссипации кинетической энергии общей и мезомасштабной циркуляции вод может быть определяющей

Расчет числа Ричардсона и коэффициентов вертикального обмена по профилям ρ(z) и U(z) «Аквалога»

Q_c = k(∂C/∂z) – поток субстанции С по вертикали. Для его расчета нужно иметь профиль субстанции C(z) и коэффициента обмена k.

Градиентное число Ричардсона <Ri> = < N² > / <U_z²> рассчитанное по данным Аквалога (Черное море, 11-13 июля, 2007). Толстая черная линия – ср. медианное значение, красная - <Ri> = 0.25, красный пунктир - <Ri> = 1. Коэффициенты вертикальной турбулентной вязкости *v* и диффузии *к*:

> $v = A_0/(1+aRi)^2 + A_1, \qquad \kappa = v/(1 + aRi) + A_2$ (Pacanowski and Philander 1981)

Пример уникальной регистрации вертикального профиля скорости течения комплексом «Аквалог»

Вертикальные профили зональной (слева) и меридиональной (справа) компонент скорости течений в 1000 м слое по данным измерений зонда-профилографа Аквалог (Черное море, 17-19 июня 2011 г). Синие точки – индивидуальные измерения, красные линии – профили средних значений скорости течения, черные линии – стандартное отклонение. Частота зондирования – раз в 3 часа.

Постановка «Аквалога» на заякоренную линию в Черном море с катера «Ашамба»

Спутниковое изображение концентрации хлорофилла_а в новороссийско-геленджикском районе Черного моря (MERIS-Envisat, 3 окт. 2009 г.) и точки постановки двух заякоренных станций: Аквалог-3 (90 м), и Аквалог-4 (270 м).

Вдольберег. составл. скор. течения: Аквалог-3 (верх) Аквалог-4 (низ)

Анализ сигнала акустического рассеяния измерителя скорости Nortek Aquadop – 2 мГц

Амплитуда	сигнала	обратного	
рассеяния	звука на	различных	
частотах зав	висит от раз	мера частиц,	
на которых	происходит	г рассеяние.	
При этом	пиковые	амплитуды	
рассеяния н	аблюдаются	і для частиц	
радиус кото	рых "а"уд	овлетворяет	
условию: k*a	а=1, где "k"=	$2\pi/\lambda = 2\pi f/c$	
– волновое	число. Данн	ые Aqaudop	
отображают	сигнал ра	ссеяния на	
частицах, д	ля которых	10>k*a>0.1,	
что соотво	етствует ч	астицам с	
радиусом от 10 микрон до 1 мм.			

Frequency (MHz)	Particle diameter for	
	k*a = I	
10	50 μm	
3.0	160 μm	
1.5	320 μm	
0.50	960 μm	

- Zooplankton scatterers:
- swim-bladdered fish,
- Pteropods,
- Capepods.

Изменчивость сигнала акустического рассеяния Nortek Aquadop

Изменчивость сигнала акустического рассеяния Nortek Aquadop (справа) и сопутствующие профили концентрации растворенного кислорода (синяя кривая), флюоресценции хлорофилла (красная кривая), мутности (черная кривая)

Изменчивость сигнала акустического рассеяния Nortek Aquadop в октябре 2009 г. (слева) и в июле 2007 г. (справа). Частота зондирования в окт. 2009 г. – раз в 2 часа, в 2007 г. – раз в час.

Сигнал акустического рассеяния как индикатор суточных миграций зоопланктона

«Портрет» зоопланктонного вида *Calanus euxinus*, совершающего суточные миграции в Черном море

Выводы (3)

Сигнал обратного акустического рассеяния измерителя скорости течения Nortek Aquadop (2 мГц), установленного на заякоренном автономном зонде-профилографе «Аквалог», фитохорошим индикатором частиц является И зоопланктона размером от десятков микрон до нескольких миллиметров. Анализ этого сигнала, полученного при многократных зондированиях водной среды Черного моря выделить суточные вертикальные миграции ПОЗВОЛИЛ зоопланктона от нижней границы кислородной зоны (120-150 м) до верхнего перемешанного слоя. Характерная скорость вертикального перемещения зоопланктона время BO миграции имеет порядок 1 см/с. Сопутствующие измерениям ловы зоопланктона позволили установить, что сетные мигрирующим видом является Calanus euxinus.