О.В. Копелевич, ИО РАН, Москва

Физические аспекты спутниковых наблюдений цвета океана

Достоинства спутниковых сканеров цвета

- Только излучение видимой области спектра способно проходить с малыми потерями(и выходить обратно) через поверхность раздела атмосфера-океан.
- Излучение, вышедшее из водной толщи, содержит информацию о характеристиках подповерхностного слоя океана и процессах, происходящих в этом слое.
- Спутниковые сканеры цвета, наряду с ИК-радиометрами, наиболее эффективны с экономической точки зрения.
- Данные спутниковых сканеров цвета, также как ИК радиометров, можно совершенно бесплатно получать через Интернет в течение суток после измерений.
- Полоса обзора большинства спутниковых сканеров цвета составляет порядка 1500 км при пространственном разрешении 250 м 1 км.

Недостаток: облачность – непреодолимое препятствие.

Примеры результатов, полученных со сканеров цвета

Каспийское море. Цветение Nodularia Пылевая буря. Атлант. океан

Атлантический океан. Хл. Май 1998.

Спутниковые изображения в видимом цвете

Кокколитофоридное цветение в Баренцевом море по данным сканера MODIS-Terra 1 августа 2007 г. Наводнение в щтате Квинсленд, Австралия. Изображение в видимом свете по данным сканера MODIS-Aqua, 4 января 2007 г.

In this image of Sentinel-3, captured on 27 July 2019, sea ice can be seen in the waterways of the Canadian Archipelago, as well as broken-up sea ice in the Beaufort Sea. Numerous, large ice floes are seen at the southern margin of the pack ice, and can be seen drifting southwards. As the pack ice drifts and encounters warmer waters, the ice is more prone to rapid melting.

The SENTINEL-3 Ocean and Land Colour Instrument (OLCI)

- swath width: 1 270 km
- push-broom imaging spectrometer with five cameras, mitigation of sun-glint contamination by tilting cameras in westerly direction
- spatial sampling: 300 m
- spectrum: 21 bands [0.4-1.02] μm
- radiometric accuracy: 2% abs, 0.1% rel
- launch mass: 153 kg
- size: 1.3 m³
- design lifetime: 7.5 years.

Рис. 1. Горизонтальный разрез правого глазного яблока

1 — радужка, 2 — хрусталик; 3 — ось фиксации; 4 — водянистая влага; 5 — роговица; 6 — цилиарная мышца; 7 — стекловидное тело; 8 — склера; 9 — сосудистая оболочка; 10 — сетчатка; 11 — фовеа (центральная ямка); 12 – оптическая ось; 13 -- слепое пятно; 14 — зрительный нерв (к мозгу)

Как видит человеческий глаз

Рис. 8. Построение изображения в редуцированном глазе

Показатели преломления:

Роговица – 1.376 Хрусталик – 1.386 Водянистая влага и стекловидное Тело – 1.336.

 $\begin{aligned}
\underbrace{\mathcal{L}_{\mathcal{F}}^{F_{\mathcal{F}}}}_{\mathcal{F}_{\mathcal{F}}} &= \int_{\mathcal{F}_{\mathcal{F}}}^{760} \mathcal{F}_{\mathcal{F}} \, d\mathcal{X} - \underbrace{\mathcal{H}_{\mathcal{F}_{\mathcal{F}}}}_{\mathcal{H}_{\mathcal{F}}} \underbrace{\mathcal{R}_{\mathcal{F}_{\mathcal{F}}}}_{\mathcal{H}_{\mathcal{F}}} \underbrace{\mathcal{R}_{\mathcal{F}}}_{\mathcal{H}_{\mathcal{F}}} \underbrace{\mathcal{R}_{\mathcal{F}}}_{\mathcal{H}_{\mathcal{F}}}}_{\mathcal{H}_{\mathcal{F}}} \underbrace{\mathcal{R}_{\mathcal{F}}}_{\mathcal{H}_{\mathcal{F}}}}_{\mathcal{H}_{\mathcal{F}}} \underbrace{\mathcal{R}_{\mathcal{F}}}_{\mathcal{H}_{\mathcal{F}}}} \underbrace{\mathcal{R}_{\mathcal{F}}}_{\mathcal{H}_{\mathcal{F}}}}_{\mathcal{H}_{\mathcal{F}}} \underbrace{\mathcal{R}_{\mathcal{F}}}_{\mathcal{H}_{\mathcal{F}}}}_{\mathcal{H}_{\mathcal{F}}} \underbrace{\mathcal{R}_{\mathcal{F}}}_{\mathcal{H}_{\mathcal{F}}}}_{\mathcal{H}_{\mathcal{F}}} \underbrace{\mathcal{R}_{\mathcal{F}}}_{\mathcal{H}}}_{\mathcal{H}_{\mathcal{F}}}}_{\mathcal{H}_{\mathcal{F}}} \underbrace{\mathcal{R}_{\mathcal{F}}}_{\mathcal{H}}}_{\mathcal{H}}}_{\mathcal{H}} \underbrace{\mathcal{R}_{\mathcal{F}}}_{\mathcal{H}}}_{\mathcal{H}}}_{\mathcal{H}} \underbrace{\mathcal{R}_{\mathcal{F}}}_{\mathcal{H}}}_{\mathcal{H}} \underbrace{\mathcal{R}_{\mathcal{H}}}_{\mathcal{H}}}_{\mathcal{H}}}_{\mathcal{H}} \underbrace{\mathcal{R}_{\mathcal{H}}}_{\mathcal{H}}}_{\mathcal{H}}}_{\mathcal{H}} \underbrace{\mathcal{R}_{\mathcal{H}}}_{\mathcal{H}}}_{\mathcal{H}} \underbrace{\mathcal{R}_{\mathcal{H}}}_{\mathcal{H}}}_{\mathcal{H}} \underbrace{\mathcal{R}_{\mathcal{H}}}_{\mathcal{H}}}_{\mathcal{H}} \underbrace{\mathcal{R}_{\mathcal{H}}}_{\mathcal{H}}}_{\mathcal{H}} \underbrace{\mathcal{R}}}_{\mathcal{H}}}_{\mathcal{H}} \underbrace{\mathcal{R}}_{\mathcal{H}}}_{\mathcal{H}} \underbrace{\mathcal{R}}}_{\mathcal{H}} \underbrace{\mathcal{R}}_{\mathcal{H}}}_{\mathcal{H}} \underbrace{\mathcal{R}}}_{\mathcal{H}}}_{\mathcal{H}} \underbrace{\mathcal{R}}}_{\mathcal{H}} \underbrace{\mathcal{R}}}_{\mathcal{H}} \underbrace{\mathcal{R}}}_{\mathcal{H}}}_{\mathcal{H}} \underbrace{\mathcal{R}}}_{\mathcal{H}}}_{\mathcal{H}} \underbrace{\mathcal{R}}}_{\mathcal{H}} \underbrace{\mathcal{R}}}_{\mathcal{H}} \underbrace{\mathcal{R}}}_{\mathcal{H}}} \underbrace{\mathcal{R}}}_{\mathcal{H}} \underbrace{\mathcal{R}}}_{\mathcal{H}$ 02 1,00 0.80 0,60 0,40 0,20 400 440 480 520 560 600 640 680 720 A. HM Рис. 3.5. Кривая видности. $K_{max} = \frac{1}{A}$, $rge A = 0.00160 \frac{B_T}{du} - \frac{Mexatureckuli}{FEUBOULEUTTA}$ $K_{max} = 625 \frac{M}{BT}$. Tapyca_2020

Средние нормализованные спектральные характеристики чувствительности цветовых <u>рецепторов</u> человека — <u>колбочек</u>. Штриховой линией показана чувствительность <u>палочек</u> — рецепторов сумеречного зрения. Ось длин волн на графике имеет <u>логарифмический масштаб</u>

Восприятие цвета человеческим глазом

$$\begin{aligned} \mathcal{Y}_{0} \circ \rho_{g} u \mu a \overline{m} \delta \ell & y b e \overline{m} a : \\ \mathcal{X} &= \int_{380}^{770} \mathcal{F}_{\lambda} \cdot \overline{x}(\lambda) \cdot d\lambda ; \quad - \quad \ell \mu a c \mu \delta n u \\ \mathcal{Y} &= \int_{380}^{770} \mathcal{F}_{\lambda} \cdot \overline{y}(\lambda) \cdot d\lambda \quad - \quad z e n e \mu \delta n u \\ \mathcal{Z} &= \int_{380}^{770} \mathcal{F}_{\lambda} \cdot \overline{z}(\lambda) \cdot d\lambda \quad - \quad c u \mu u u \\ \mathcal{Z} &= \int_{380}^{770} \mathcal{F}_{\lambda} \cdot \overline{z}(\lambda) \cdot d\lambda \quad - \quad c u \mu u u \\ \mathcal{Z} &= \int_{380}^{770} \mathcal{F}_{\lambda} \cdot \overline{z}(\lambda) \cdot d\lambda \quad - \quad c u \mu u u \\ \mathcal{Z} &= \int_{380}^{770} \mathcal{Z}_{\lambda} \cdot \overline{z}(\lambda) \cdot d\lambda \quad - \quad c u \mu u u \\ \mathcal{Z} &= \int_{380}^{770} \mathcal{Z}_{\lambda} \cdot \overline{z}(\lambda) \cdot d\lambda \quad - \quad c u \mu u u \\ \mathcal{Z} &= \int_{380}^{770} \mathcal{Z}_{\lambda} \cdot \overline{z}(\lambda) \cdot d\lambda \quad - \quad c u \mu u u \\ \mathcal{Z} &= \int_{380}^{770} \mathcal{Z}_{\lambda} \cdot \overline{z}(\lambda) \cdot d\lambda \quad - \quad c u \mu u u \\ \mathcal{Z} &= \int_{380}^{770} \mathcal{Z}_{\lambda} \cdot \overline{z}(\lambda) \cdot d\lambda \quad - \quad c u \mu u u \\ \mathcal{Z} &= \int_{380}^{770} \mathcal{Z}_{\lambda} \cdot \overline{z}(\lambda) \cdot d\lambda \quad - \quad c u \mu u u \\ \mathcal{Z} &= \int_{380}^{770} \mathcal{Z}_{\lambda} \cdot \overline{z}(\lambda) \cdot d\lambda \quad - \quad c u \mu u u \\ \mathcal{Z} &= \int_{380}^{770} \mathcal{Z}_{\lambda} \cdot \overline{z}(\lambda) \cdot d\lambda \quad - \quad c u \mu u u \\ \mathcal{Z} &= \int_{380}^{770} \mathcal{Z}_{\lambda} \cdot \overline{z}(\lambda) \cdot d\lambda \quad - \quad c u \mu u u \\ \mathcal{Z} &= \int_{380}^{770} \mathcal{Z}_{\lambda} \cdot \overline{z}(\lambda) \cdot d\lambda \quad - \quad c u \mu u u \\ \mathcal{Z} &= \int_{380}^{770} \mathcal{Z}_{\lambda} \cdot \overline{z}(\lambda) \cdot d\lambda \quad - \quad c u \mu u u \\ \mathcal{Z} &= \int_{380}^{770} \mathcal{Z}_{\lambda} \cdot \overline{z}(\lambda) \cdot d\lambda \quad - \quad c u \mu u u \\ \mathcal{Z} &= \int_{380}^{770} \mathcal{Z}_{\lambda} \cdot \overline{z}(\lambda) \cdot d\lambda \quad - \quad c u \mu u u \\ \mathcal{Z} &= \int_{380}^{770} \mathcal{Z}_{\lambda} \cdot \overline{z}(\lambda) \cdot d\lambda \quad - \quad c u \mu u u \\ \mathcal{Z} &= \int_{380}^{770} \mathcal{Z}_{\lambda} \cdot \overline{z}(\lambda) \cdot d\lambda \quad - \quad c u \mu u u \\ \mathcal{Z} &= \int_{380}^{770} \mathcal{Z}_{\lambda} \cdot \overline{z}(\lambda) \cdot d\lambda \quad - \quad c u \mu u u \\ \mathcal{Z} &= \int_{380}^{770} \mathcal{Z}_{\lambda} \cdot \overline{z}(\lambda) \cdot d\lambda \quad - \quad c u \mu u u \\ \mathcal{Z} &= \int_{380}^{770} \mathcal{Z}_{\lambda} \cdot \overline{z}(\lambda) \cdot d\lambda \quad - \quad c u \mu u u \\ \mathcal{Z} &= \int_{380}^{770} \mathcal{Z}_{\lambda} \cdot \overline{z}(\lambda) \cdot d\lambda \quad - \quad c u \mu u u \\ \mathcal{Z} &= \int_{380}^{770} \mathcal{Z}_{\lambda} \cdot \overline{z}(\lambda) \cdot d\lambda \quad - \quad c u \mu u u \\ \mathcal{Z} &= \int_{380}^{770} \mathcal{Z}_{\lambda} \cdot \overline{z}(\lambda) \cdot d\lambda \quad - \quad c u \mu u u \\ \mathcal{Z} &= \int_{380}^{770} \mathcal{Z}_{\lambda} \cdot \overline{z}(\lambda) \cdot d\lambda \quad - \quad c u \mu u \\ \mathcal{Z} &= \int_{380}^{770} \mathcal{Z}_{\lambda} \cdot \overline{z}(\lambda) \cdot d\lambda \quad - \quad c u \mu u \\ \mathcal{Z} &= \int_{380}^{770} \mathcal{Z}_{\lambda} \cdot \overline{z}(\lambda) \cdot d\lambda \quad - \quad c u \mu u \\ \mathcal{Z} &= \int_{380}^{770} \mathcal{Z}_{\lambda} \cdot \overline{z}(\lambda) \cdot d\lambda \quad - \quad c u \mu u \\ \mathcal{Z} &= \int_{380}^{770} \mathcal{Z}_{\lambda} \cdot \overline{z}(\lambda) \cdot d\lambda \quad - \quad c u \mu u \\ \mathcal{Z$$

Рис. 9.12. Удельные координаты цвета x, y, z стандартного колориметрического наблюдателя МКО 1964 г. (Джадд и Вышецкий, 1978).

$$x = \frac{X}{X + Y + Z}; \quad y = \frac{Y}{X + Y + Z}; \quad z = \frac{Z}{X + Y + Z}$$

$$x + y + z = 1.$$

Двумерная диаграмма цветности

Сложение цветов

Рис. 9.17. Координаты цветности излучения, выходящего из океана.

1 — западная часть Саргассова моря, Атлантический океан; 2 — у побережья о. Гаити, Атлантический океан; 3 — Карибское море, Центральный район; 4 — Японское море; 5 — восточная часть тропической Атлантики, 0—10° с. ш.; 6 — восточная часть Тихого океана, зона экваторнального апвеллинга; 7 — вход в Панамский канал со стороны Атлантики; 8 — Панамский залив, Тихий океан; 9 — Тихий океан, вблизи восточного побережья Японии; 10 восточная Атлантика, район Мавританского апвеллинга, 15—19° с. ш.; 11 — зона шельфа у западного побережья Африки, 20°30'—22° с. ш., глубины 25—300 м, Атлантический океан; 12 — залив Микава, восточное побережье Японии, Тихий океан.

Связь между цветовым тоном и показателем диффузного ослабления

Зависимость между доминирующей длиной волны λ_T выходящего из экеана излучения и оптическим индексом типа вод *M*. Уравнение регрессии: $\lambda_T = 473 + 4,3$ *M*. Средние квадратические отклонения $\lambda_T = 4$ им при $M \leq 5$ и 8 им при , $5 < M \leq 15$.

Station	Position	Solar elevation (°)	Depth (m)	Colour (nm)	Purity (%)
Pacific Ocean	S01°20′	C 1	0	479	
142	$E167^{\circ}23'$	01	2	470	97
			10	473	20
			10	470	0.0
			25	472	02
			50	469	90
Indian Ocean	S11°25′	0.1	10	479	90
191	$E102^{\circ}13'$	31	50	460	07
192	$S11^{\circ}25'$	20	00	409	97 Q.1
	$E102^{\circ}08'$	80	10	479	Q7
			10	473	01
			25	472	92
			50	400	94
Mediterranean	N33°54' E28°17'	74	0	477	83
277			5	173	86
			10	173	87
۰.			10	470	07
			20	472	05
			50	470	50
Atlantic Ocean off Bermuda	N32 W65	70	0	483	71
Sargasso Sea	N26°50'	6.0	0	470	90
	W63°30′	02	10	470	
			10	470	00
			20	400	92
			50	407	90 07
		05	100	400	91 0E
		20	1	411	00
			10	470	88
			25	469	91
			50	468	93
			100	466	95
Baltic Sea	N60°	55	0	540	• •
	E19°	00	10	551	24 72
			10	552	10
			20	553	01

Характеристики излучения, выходящего из воднои толщи, и значения альбедо в разных диапазонах спектра							
Река	Цветовой тон, нм	Чистота цвета, %	Индекс цвета	,			
				400— —500 нм	500— —600 нм	600— —700 нм	400— —700 нм
Амазонка Мадейра Солимойнс Риу-Негру Гапажос Шингу	578 582 581 583 578 Tato77ca	38 46 43 65 50 20253	2,4 2,1 2,0 3,5 3,0 3,0	8,7 12,0 15,0 6,1 7,1 7,4	13,0 23,0 29,0 6,5 8,8 10,0	16,0 36,0 41,0 7,0 9,6 11,0	12,0 22,0 27,0 6,5 8,5 9,4

Построение изображений в видимом цвете ("True Color" image) по данным измерений в трех спектральных каналах (443, 555 и 670 нм) спутникового сканера цвета SeaWiFS

Что «видят» спутниковые сканеры цвета?

Факторы, формирующие спектральную яркость восходящего излучения, измеряемую спутниковым датчиком цвета

«Истинный» цвет океана обусловлен спектральным составом, излучения, выходящего из водной толщи. Спектральная яркость выходящего излучения определяется оптическими свойствами морской воды, которые зависят от количественного и качественного состава содержащегося в морской воде вещества. «Видимый» спутниковым датчиком цвет обусловлен в значительной степени влиянием атмосферы и отражением от поверхности.

Составляющие яркости восходящего излучения на верхней границе атмосферы

 $L_t(\lambda_i)$ – спектральная яркость восходящего излучения на верхней границе атмосферы, измеряемая спутниковым датчиком:

 $L_{t}(\lambda_{i}) = L_{r}(\lambda_{i}) + L_{a}(\lambda_{i}) + T(\lambda_{i}) \cdot L_{g}(\lambda_{i}) + t(\lambda_{i}) \cdot L_{wc}(\lambda_{i}) + t(\lambda_{i}) \cdot L_{w}(\lambda_{i}),$

где $L_r(\lambda_i)$ и $L_a(\lambda_i)$ – яркости, обусловленные, соответственно, рэлеевским рассеянием и многократным рассеянием аэрозолем;

 $L_g(\lambda_i)$ и $L_{wc}(\lambda_i)$ – яркости, обусловленные, соответственно, солнечными бликами и диффузным отражением пеной;

 $T(\lambda_i)$ и $t(\lambda_i)$ - ·направленное и диффузное пропускание излучения атмосферой;

 $L_w(\lambda_i)$ – искомая яркость излучения, вышедшего из водной толщи.

Вышеперечисленные яркости зависят от зенитного и азимутального углов Солнца θ_0, φ_0 и наблюдения θ, φ .

Спектральные распределения разных составляющих восходящего излучения на верхней границе атмосферы (Данные SeaWiFS для района около Гавайских островов, 16 июля 1998; даны значения яркости в мВт/см²/мкм/ср).

λ_i , нм	412	443	490	510	555	670	765	865
$L_t(\lambda_i)$	9.13	8.23	6.22	5.22	3.95	2.34	1.48	1.24
$L_r(\lambda_i)$	6.74	5.62	3.78	3.12	2.11	0.84	0.36	0.21
$L_a(\lambda_i)$	0.45	0.53	0.58	0.57	0.56	0.50	0.38	0.34
$TL_g(\lambda_i)$	0.63	0.83	0.99	1.00	1.03	0.98	0.74	0.68
$tL_{wc}(\lambda_i)$	0.002	0.003	0.003	0.003	0.003	0.002	0.002	0.001
$tL_w(\lambda_i)$	1.311	1.246	0.890	0.516	0.232	0.023	0.002	0.001

 $L_t(\lambda_i)$ – суммарная яркость восходящего излучения;

 $L_r(\lambda_i)$ – рэлеевское рассеяние;

 $L_a(\lambda_i)$ – аэрозольное рассяние (включая взаимодействие рэлеевского и аэрозольного рассеяния);

 $TL_{g}(\lambda_{i})$ – солнечный блик;

 $tL_{wc}(\lambda_i)$ – диффузное отражение пеной;

 $tL_w(\lambda_i)$ – излучение, вышедшее из водной толщи.

Два главных этапа обработки данных спутниковых сканеров цвета

1. Атмосферная коррекция – определение спектральных значений яркости $L_W(\lambda_i)$ излучения, вышедшего из водной толщи, по спектральным значениям яркости $L_t(\lambda_i)$ восходящего излучения на верхней границе атмосферы, измеренным спутниковым датчиком:

 $L_t(\lambda_i) = L_r(\lambda_i) + L_a(\lambda_i) + T(\lambda_i) \cdot L_g(\lambda_i) + t(\lambda_i) \cdot L_{wc}(\lambda_i) + t(\lambda_i) \cdot L_w(\lambda_i),$

- где $L_r(\lambda_i)$ и $L_a(\lambda_i)$ яркости, обусловленные, соответственно, рэлеевским рассеянием и многократным рассеянием аэрозолем;
- $L_{g}(\lambda_{i})$ и $L_{wc}(\lambda_{i})$ яркости, обусловленные, соответственно, солнечными бликами и диффузным отражением пеной;
- $T(\lambda_i)$ и $t(\lambda_i)$ направленное и диффузное пропускание излучения атмосферой; $L_w(\lambda_i)$ искомая яркость излучения, вышедшего из водной толщи.
- 2. Расчет биооптических параметров воды по спектральным значениям яркости $L_w(\lambda_i)$ излучения, вышедшего из водной толщи.

Биооптические алгоритмы

Сравнение стандартного и регионального алгоритмов. Баренцево море.

The mean monthly distributions of chlorophyll concentration in the Barents Sea calculated with the standard SeaWiFS algorithm (right) and with the regional SIO RAS algorithm, validated by field data (left). August 2001.

St.	Coordinates	Chl Meas.	Chl Auth.	Chl SeaWiFS	β	
10 88	70.42 N, 47.58E	0.16	0.25	0.63	5.7	
1090	70.18N, 52.42E	0.5	0.77	3.3	12.7	7
1095	68.97N, 58.47E	0.79	0.21	10.4	114	Pechano
1112	69.09N, 58.29E	0.42	0.62	9.5	36.7	lector the
1125	69.50N, 57.25E	0.23	0.06	2.8	76.2	[2
1126	69.67N, 57.24E	0.18	0.19	2.7	33.3	pasin
1157	70.54N, 52.79E	0.25	0.17	1.09	15.0	
1174	69.25N, 41.00E	1.39	1.03	1.0	2.3	-
1183	71.50N, 41.00E	0.38	0.32	0.81	3.8	
1196	74.75N, 41.00E	0.13	0.14	0.28	3.6	
1209	78.00 N, 41.00E	0.16	0.17	0.25	2.8	
1281	76.00N, 42.27E	0.27	0.41	0.44	2.2	
Pecho	ra Basin	1	48%	12 time	S	
out	of it		27%	2 time	25	

Баренцево море

Сравнение между значениями концентрации Chl, измеренными (meas.), рассчитанными по региональному (Auth.) и стандартному (SeaWiFS) алгоритмам Сравнение распределений концентрации хлорофилла по данным спутникового сканера цвета SeaWiFS 1.08.06, рассчитанных посредством стандартного (слева) и нового регионального (справа) алгоритмов

chlcasp 1 Aug 2006 10:06:25 - 1 Aug 2006 10:07:24

Необходимые условия получения качественных геофизических продуктов:

- 1. Выполнение необходимых требований к характеристикам спектральных каналов спутникового датчика;
- 2. Обеспечение радиометрической точности измерений не хуже 5% для определения абсолютных значений и 1% для относительных изменений;
- 3. Контроль калибровки спутникового датчика в период работы на орбите посредством бортовых и приводных измерений;
- 4. Разработка алгоритмов атмосферной коррекции и биооптических алгоритмов, адаптированных к особенностям прибора и его техническим характеристикам;
- Обеспечение необходимой дополнительной информации для обработки спутниковых данных (данные о содержании озона, атмосферном давлении, относительной влажности, скорости ветра);
- Верификация алгоритмов по данным натурных измерений для различных гидрометеорологических и океанологических условий; оценка точности рассчитываемых геофизических продуктов.

Организация получения, обработки и верификации данных

Оптический буй МОВҮ для контроля калибровки Спутникового датчика и верификации алгоритмов

относительно точки его закрепления.

MOBY watch circle

2 km

(AErosol RObotic NETwork) is an optical ground based aerosol monitoring network. The network hardware consists of identical automatic sun-sky scanning spectral radiometers. The data provide globally distributed near real time observations of aerosol spectral optical depths and aerosol size distributions. They used for algorithm validation of satellite aerosol retrievals and as well as for characterization of aerosol properties that are unavailable from satellite sensors.

LandSat-8

Выведен на орбиту 11 февраля 2013 года. На борту два набора инструментов: <u>Operational Land Imager</u> (OLI) и <u>Thermal InfraRed Sensor</u> (TIRS). Спутник рассчитан на срок активного существования в 5.25 лет, однако запас топлива позволяет использовать его до 10 лет.

Спектральный канал	Длины волн, мкм	Разреше- ние
Канал 1 — Побережья и аэрозоли (Coastal / Aerosol, New Deep Blue)	0.433 — 0.453	30 м
Канал 2 — Синий (Blue)	0.450 — 0.515	30 м
Канал 3 — Зелёный (Green)	0.525 - 0.600	30 м
Канал 4 — Красный (Red)	0.630 — 0.680	30 м
Канал 5 — Ближний ИК (Near Infrared, NIR)	0.845 - 0.885	30 м
Канал 6 — Ближний ИК (Short Wavelength Infrared, SWIR 2)	1.560 - 1.660	30 м
Канал 7 — Ближний ИК (Short Wavelength Infrared, SWIR 3)	2.100 - 2.300	30 м
Канал 8 — Панхроматический (Panchromatic, PAN)	0.500 - 0.680	15 м
Канал 9 — Перистые облака (Cirrus, SWIR)	1.360 — 1.390	30 м
Канал 10 — Дальний ИК (Long Wavelength Infrared, TIR1)	10.30 — 11.30	100 м
Канал 11 — Дальний ИК (Long Wavelength Infrared, TIR2)	11.50 — 12.50	100 м

Распространение стока Лены в море Лаптевых

Слева: распределение показателя поглощения желтого вещества по данным MODIS-Aqua за период 6 -17 сентября 2015 г., справа - изображение от 8 сентября 2015 г. со спутника Landsat 8. Хорошо видна структура речного стока Лены – множество сливающихся проток, несущих теплые, пресные и мутные воды (Глуховец, Артемьев, 2017). Спутниковые изображения района вблизи Куршского и Калининградского заливов в юго-восточной части Балтийского моря. Левый и средний рисунки – данные сканера цвета MODIS-Aqua 22 апреля

2009 г., правый – изображение Landsat 21 апреля 2009 г.

Распределение концентрации хлорофилла, мг·м⁻³, рассчитанное по алгоритму Woźniak et al. (2008)

Распределение концентрации взвеси, г·м⁻³, рассчитанное по алгоритму Буренков и др. (2008) Изображение Landsat 21 апреля, построенное по данным первых 3-х каналов.

Спасибо за внимание!