Двухканальный подводный акустический волнограф

Докладчик: Мария Рябкова, аспирант 4-го года обучения, Института прикладной физики РАН, Нижний Новгород

Научная группа: В.Ю. Караев, Ю.А. Титченко, М.А. Панфилова, Е.М. Мешков, В.Л. Вебер

Мотивация

положения пятная облучения при сканировании

 - Амплитудные характеристики и направление энергонесущих волн
 - Состояние приводного слоя атмосферы (давление, скорость ветра и пр.) Скаттерометр «СКАТ-3М» для космического аппарата «Метеор-М» №3 Космического эксперимента «Радиолокатор» на российском модуле МКС

www.ndbc.noaa.gov Более 1200 морских буев

Полигон «Геленджик» ЮО ИО РАН

Непрерывные измерения с октября 2019 года (первые эксперименты в декабре 2017 года)

Зеленые звездочки — донные станции в составе ADCP и термокосы

зеленый кружок – станция профилографа "Аквалог"

зеленый квадрат — морская метеостанция

красные молнии – радиолокационные измерения

Гидроакустический волнограф «Кальмар»

- Высотомер импульсный, ориентирован в надир, частота 200 кГц (длина волны 7.5 мм), частота повторения импульсов 2 Гц, диаграмма направленности 15х15°. Длина импульса: 5, 10, 20, 40 мкс
- Доплеровский гидролокатор

 непрерывное излучение,
 частота 200 кГц, наклон 5
 градусов от надира,
 диаграмма направленности

Океанографическая платформа

Горьковское водохранилище

28.02.-24.04.2019, декабрь 2019 — наст. вр.

– измерение толщины льда и высот волн

Волнограф
«Стрела»
оснащен
импульсным
гидролокатором
и датчиком
давления

Импульсный канал: принцип

$$H_0 = c \tau / 2$$

c=1500 м/с – скорость звука в воде т – время с момента излучения импульса до момента приема отраженного импульса

Отраженный импульс

Спектр волнения

SWH

Сечение рассеяния вблизи надира

V.Yu. Karaev, M.A. Panfilova, G.N. Balandina, and K. Chu, Issledovanie Zemli iz kosmosa, pp. 62-77, Retrieval of slope variance by microwave measurements, 4, 2012

Задний склон импульса

 H_0

Моделируем импульс 50 мкс, 30 м

$$\sigma_{xx} = 0.012$$

$$\sigma_{yy} = 0.018$$

 $\sigma_{tot} = 0.03$

$$RCS = RCS / G^4$$

$$G = \exp\left(-1.38 \cdot \frac{\theta_0^2}{15^2}\right)$$

 $\theta_0 = \arccos(\frac{t_0}{t})$

Определение наклонов

$$RCS = \frac{A}{\cos^4 \theta_0} \exp \left[-\frac{tg^2 \theta_0}{\sigma_{tot}^2} \right]$$

$$\ln(RCS \cdot \cos^4 \theta_0) = -a \cdot tg^2 \theta_0 + b$$

$$a = \frac{1}{\sigma_{tot}^2}$$

$$\sigma_{tot}^2 = \frac{1}{32.88} = 0.03$$

Доплеровский спектр

Δf – ширина ДС

$$DS(f) = A_0 \exp(-\frac{(f - f_{sh})^2}{2(\Delta f)^2})$$

Зондирование вблизи надира

Угол падения θ_0 =2°

Угол падения θ_0 =10°

$$f_{sh} = \frac{\int f \cdot DS(f) df}{\int DS(f) df}$$

$$\Delta f = \sqrt{\frac{\int f^2 DS(f) df}{\int DS(f) df}} - f_{sh}^2$$

ДС (МАЛЫЕ УГЛЫ ПАДЕНИЯ)

$$\Delta f \propto \frac{\cos \theta_0}{\lambda} \sqrt{\sigma_{tt}^2 + \frac{11.04 \cdot (K_{xt})^2}{\delta_x^2 + 11.04 \cdot \sigma_{xx}^2}} \frac{11.04 \cdot \cos^2 \theta \cdot (K_{yt})^2}{\delta_y^2 + 11.04 \cdot \sigma_{yy}^2}$$

$$f_{sh} = -\frac{2 \cdot \sin \theta_0}{\lambda} \cdot \frac{11.04 \cdot K_{xt}}{\delta_x^2 + 11.04 \cdot \sigma_{xx}^2}$$

$$\sigma_{0} \approx \frac{\left|R_{eff}(U_{10})\right|^{2} \exp\left[-\frac{tg^{2}\theta_{0}}{2} \left(\frac{11.04}{\delta_{x}^{2} + 11.04\sigma_{xx}^{2}}\right)\right]}{2\cos^{4}\theta_{0}\sqrt{\frac{\delta_{x}^{2}}{11.04} + \sigma_{xx}^{2}} \frac{\delta_{y}^{2}}{11.04\cos^{2}\theta_{0}} + \sigma_{yy}^{2}}$$

Y. A. Titchenko and V. Y. Karaev, Radiophysics and Quantum Electronics, vol. 55, pp. 493-501, 2013.

Статистические моменты второго порядка

$$\sigma_{xx}^{2} = \int_{0}^{2\pi} \int_{0}^{\kappa_{b}} W(\kappa, \phi) \kappa^{3} \cos^{2}(\phi) d\phi d\kappa,$$

$$\sigma_{yy}^{2} = \int_{0}^{2\pi} \int_{0}^{\kappa_{b}} W(\kappa, \phi) \kappa^{3} \sin^{2}(\phi) d\phi d\kappa,$$

$$\sigma_{tt}^{2} = \int_{0}^{2\pi} \int_{0}^{\kappa_{b}} W(\kappa, \phi) \kappa \omega^{2}(\kappa) d\phi d\kappa,$$

$$K_{xt} = \int_{0}^{2\pi} \int_{0}^{\kappa_{b}} W(\kappa, \phi) \kappa^{2} \omega(\kappa) \cos(\phi) d\phi d\kappa,$$

$$K_{yt} = \int_{0}^{2\pi} \int_{0}^{\kappa_{b}} W(\kappa, \phi) \kappa^{2} \omega(\kappa) \sin(\phi) d\phi d\kappa,$$

where κ and $\omega(\kappa)$ are the wavenumber and the angular frequency of sea waves connected by the dispersion relation, ϕ is the azimuth angle of wave propagation relative to the axis x, $W(\kappa, \phi)$ is the sea wave spectrum in polar coordinates, and κ_b is the boundary wavenumber

W(к, φ) – модельный спектр (Ryabkova et al., JGR, 2019)

Ширина и смещение ДС

-40

скорость ветра, м/с

Определение направления волнения

M. Panfilova, M. Ryabkova, V. Karaev and E. Skiba, TGRS, vol. 58, no. 3, pp. 2225-2231, March 2020.

АЗИМУТАЛЬНАЯ ЗАВИСИМОСТЬ

ЗАКЛЮЧЕНИЕ

- о Импульсный канал акустического волнографа позволяет восстанавливать высоту волн, спектр волнения и дисперсию наклонов крупномасштабного волнения.
- Доплеровский канал акустического волнографа позволяет проводить измерения ДС отраженного взволнованной поверхностью сигнала. Смещение ДС можно использовать для определения направления волнения.

Спасибо за внимание!

Работа поддержана грантом РФФИ (проект № 18-35-20057 мол_а_вед).

Если вы заинтересованы в экспериментальных данных, свяжитесь со мной:

m.rjabkova@gmail.com (Мария Рябкова)

или с моими коллегами:
yuriy@ipfran.ru (Юрий Титченко)
volody@ipfran.ru (Владимир Караев)
marygo@mail.ru (Мария Панфилова)

DUAL-FREQUENCY PRECIPITATION RADAR

Результаты

WAVE DIRECTION DETERMINATION

Radar data wave propagation direction: 203°-215° with respect to North

String wave gauge: 217°±7°

