

Двенадцатая Международная Школа-семинар «Спутниковые методы и системы исследования Земли», Таруса, 21–25 марта 2024 г.

Поправка на состояние подстилающей поверхности

Поправка на состояние подстилающей поверхности dh_{SSB} имеет три составляющих:

- поправка SB (Skewness Bias), связанная с асимметрией распределения возвышений, следовательно, и уклонов морской поверхности (отклонение распределений от распределения Гаусса);
- поправка на электромагнитное смещение *EMB* (ElectroMagnetic Bias), физическим механизмом которой является изменчивость интенсивности рассеяния радиоволн вдоль профиля длинных поверхностных волн (доминантных волн), что приводит к разнице между средним уровнем моря и средней рассеивающей поверхностью;
- поправка *TB* (Tracker Bias), связанная с предварительной обработкой данных альтиметра на борту спутника.

Поправка SB (Skewness Bias)

Поправка SB (dh_{SB}) требует знания величины асимметрии распределения возвышений и уклонов морской поверхности (A), которая функционально не связана ни с одной величиной, рассчитываемой при обработке данных спутниковой альтимметрии (коэффициент обратного рассеяния σ_0 и значимая высота волны h_{SWH}). По этой причине данную поправку определить достаточно сложно. Существующие функциональные зависимости поправки dh_{SB} асимметрии распределения выведены исходя из теоретического анализа. Некоторые из них подтверждены лабораторными и натурными экспериментами. В общем виде эти зависимости можно записать как $dh_{SB} = A \cdot h_{SWH}/k$.

В работах (Jackson, 1979; Srokosz, 1986; Lagerloef, 1987; Rodriguez, 1988) на основе анализа распределения Грама-Шарлье возвышений морской поверхности (одномерный случай) для нелинейного приближения предложена зависимость с коэффициентом k = 4 и k = 24 соответсвенно. Нелинейная зависимость поправки dhSB предложена в работе (Parsons, Miller, 1990).

В большинстве моделей расчета поправки dh_{SSB} первой и третей составляющими $(dh_{SB}$ и $dh_{TB})$ пренебрегают, поэтому считают, что поправка на состояние подстилающей поверхности равна поправке на электромагнитное смещение dh_{EMB} .

Поправка на электромагнитное смещение EMB (ElectroMagnetic Bias)

Средняя ВМП Средняя поверхность рассеяния Медианная поверхность рассеяния **Различие между средней ВМП, средней** поверхностью рассеяния и медианной поверхностью рассеяния

Мощность отражённого сигнала альтиметра на единицу площади поверхности во впадинах волн (нижняя часть волны, расположенная ниже спокойного (RQOM больше, **VDOBHЯ** чем у гребней волн (верхняя часть выступающая волны. нал спокойным уровнем моря). Это смещение более ешё счёт усиливается 38 мелкомасштабной ряби. увеличивающей шероховатость вблизи поверхности моря гребней волн, а, следовательно, диффузное рассеивание И зондирующего импульса альтиметра.

Двенадцатая Международная Школа-семинар «Спутниковые методы и системы исследования Земли», Таруса, 21–25 марта 2024 г.

Поправка на электромагнитное смещение EMB (ElectroMagnetic Bias)

Chesapeake Bay Light Tower

Впервые этот эффект наблюдался при тестировании радара-альтиметра на маяке Chesapeake Bay Light Tower, расположенном в Чесапикском заливе Атлантического океана на расстоянии 15 миль (24 км) от мыса Генри (штат Вирджиния, США).

В эксперименте сравнивались результаты расчётов средних возвышений морской поверхности, рассчитанных

- по данным трех струнных волнографа, расположенных в засвеченной альтиметром области, диаметр которой составлял 1 м, со временем осреднения 0,1 с;
- по данным альтиметра, с рабочей частотой 14 ГГц (*Ки* диапазон), с длительностью зондирующего импульса 1 нс, с частотой повторения импульсов 60 кГЦ, с полосой пропускания приёмника 103 мГц.

Двенадцатая Международная Школа-семинар «Спутниковые методы и системы исследования Земли», Таруса, 21–25 марта 2024 г.

Экспериментальные измерения *dh_{емв}*

Зависимостьэлектромагнитногосмещения dh_{EMB} от значимой высотыволны h_{SWH} порезультатамэкспериментавЧесапикском заливеАтлантическогоокеана, проводимогос 19 сентября по12 октября 1988 года.Линии анпроксимации сответствуютзависимостям

$$-dh_{EMB} = 0,0216 - 0,0517 \cdot h_{SWH}$$

 $R^2 = 0,873$

$$-dh_{EMB} = 0,001 \cdot h_{SWH} - 0,21 \cdot h_{SWH}^2 - 0,0104 \cdot h_{SWH}^3$$
$$R^2 = 0,887$$

Двенадцатая Международная Школа-семинар «Спутниковые методы и системы исследования Земли», Таруса, 21–25 марта 2024 г.

Экспериментальные измерения *dh_{емв}*

Зависимость нормированного электромагнитного смещения (dh_{EMB}/h_{SWH}) от скорости приводного ветра U_{25} на высоте 25 м (м/с) эксперимента результатам ПО в Мексиканском заливе по данным за 6 месяцев (декабрь 1989 г. – май 1990 Линия г.). аппроксимации соответствует зависимости:

$$\beta = \frac{dh_{EMB}}{h_{SWH}} = -2,76 - 0,139 \cdot U_{25}$$
$$R^2 = 0,417$$

Двенадцатая Международная Школа-семинар «Спутниковые методы и системы исследования Земли», Таруса, 21–25 марта 2024 г.

Зависимость поправки *dh_{емв}* от частоты зондирующего сигнала

Результаты всех многочисленных экспериментов по расчёту электромагнитного смещения показали, что его величина в первую очередь зависит от рабочей частоты радиовысотомера. В работе (*Bar et al.*, 1997) представлена подобная зависимость:

$$\beta = \frac{dh_{EMB}}{h_{SWH}} = (3, 0 - 0, 0617 \cdot F)(1 \pm 0, 5)\%$$
$$R^2 = 0,887$$

где β – безразмерный коэффициент (нормированное электромагнитное смещение);

F – рабочая частота радиовысотомера;
*R*² – коэффициент детерминации.

Двенадцатая Международная Школа-семинар «Спутниковые методы и системы исследования Земли», Таруса, 21–25 марта 2024 г.

Модели расчета поправки *dh_{emb}* для спутниковых данных

Исследования электромагнитного смещения проводилось как с помощью теоретических моделей, так и экспериментальным путём. Теоретические исследованиях отражение зондирующего проводились с использованием законов геометрической оптики или теорий физической оптики. В последнем случае в отражении учитывались вклады коротких волн, а также зависимости от часты зондирующего сигнала альтиметра. Однако полное понимание физического явления электромагнитного смещения ещё не достигнуто. Поэтому современные модели dh_{EMB} в основном основаны на эмпирических подходах.

Согласно теории и экспериментальным данным со стационарных платформ, электромагнитное смещение *dh*_{EMB} зависит от многих параметров

$$\beta = \frac{dh_{EMB}}{h_{SWH}} = F(h_{SWH}, A, E, \lambda, U, s),$$

где h_{SWH} – значимая высота волны; β – безразмерный коэффициент (нормированное электромагнитное смещение); A – асимметрия плотности распределения возвышений морской поверхности; E – эксцесс плотности распределения; λ – длина доминирующей волны (зыби); U – скорость ветра; s – уклон доминирующей волны.

Модели расчета поправки *dh_{emb}* для спутниковых данных

 $_{WH}, A, E, \lambda, U, s$

Олнако. как: такие параметры асимметрия плотности распределения возвышений морской поверхности (А), эксцесс плотности распределения (Е), длина доминирующей волны (зыби) (λ) и уклон доминирующей волны (s) по данным дистанционного зондирования определить невозможно. По этой причине строятся параметрические зависимости электромагнитного модели dh_{EMB} смещения нормированного электромагнитного ИЛИ смещения в от значимой высоты волны и скорости приводного ветра или коэффициента обратного рассеяния.

Параметрические модели *dh_{емв}*

Общая формулировка для поправки на состояние подстилающей поверхности принимает вид

$$\beta = \frac{dh_{ssb}}{h_{ssh}} = a_1 + a_2 h_{swh} + a_3 U_{10} + a_4 h_{swh}^2 + a_5 U_{10}^2 + a_6 h_{swh} U_{10}$$

В зарубежной литературе принято различать одно, двух, трёх и четырёх параметрические модели. Однако такое разделение не соответствует названию моделей, так как в самой формуле используются только два параметра: значимая высота волны и скорость приводного ветра на высоте 10 м, которая обычно рассчитывается по коэффициенту обратного рассеяния. Правильнее называть модели по степени аппроксимирующего полинома:

- модель первого порядка коэффициенты $a_4 = a_5 = a_6 = 0$,
- модель второго порядка один из коэффициентов a₂, или a₃ неравен нулю одновременно один из коэффициентов a₄, a₅ или a₆ также не равен нулю.

Параметрические модели *dh_{емв}*

В работе (*Pires et al., 2016; Pires et al., 2018*) двухпараметрические модели предлагается уточнять с помощью третьего параметра. В дополнение к значимой высоте волны (h_{SWH}) и скорости приводного ветра на высоте 10 м (U_{10}) вводиться третий параметр – средний период волны (T_{mean}) . В общем виде это записывается как:

$$\beta = \frac{dh_{SSB}}{h_{SWH}} = f_1(h_{SWH}) + f_2(U_{10}) + f_3(T_{mean})$$

В надире коэффициент обратного рассеяния σ_0 в приближении геометрической оптики связан с обратной величиной среднеквадратичного наклона ($Slope_{mean}$) длинных океанских волн – $\sigma_0 \sim Slope_{mean}^{-1}$. В свою очередь, наклон средней волны эквивалентен отношению некоторой меры высоты волны h_{SWH} к длине волны $\lambda_{mean} - Slope_{mean} \sim h_{SWH} / \lambda_{mean}$, а средняя длина волны связана с её период (T_{mean}) для глубоководных гравитационных волн на больших глубинах дисперсионным соотношением – $\lambda_{mean} \sim T_{mean}^2$. Таким образом:

Цвенадцатая Международная Школа-семинар «Спутниковые методы и системы исследования Земли», Таруса, 21–25 марта 2024 г.

 $T_{mean} \Box \left(\sigma^0 h_{swh}^2 \right)^{0,25}$

Алгоритм расчета поправки *dh_{emb}* для спутниковых данных

Измеренная альтиметром высота морской поверхности (h_{SSH}) с учётом всех поправок на тропосферу и ионосферу, а также всех геофизических поправок (включая поправку обратного барометра) представляет собой суперпозицию высоты геоида (h_{geoid}) , динамической топографию океана (h_{dt}) , поправки на состояние морской поверхности (dh_{SSB}) и некоторый шум измерений (w):

$$h_{SSH} = h_{geoid} + h_{dt} + dh_{SSB} + w - b_{SSH} +$$

В контексте оценки dh_{SSB} изменение динамической топографии h_{dt} для временного интервала $t_2 - t_1$ рассматривается как шум и объединяется вместе с разницей шумов w, образуя единый член ε с нулевым средним значением:

$$h_{SSH}\Big|_{t_2} - h_{SSH}\Big|_{t_1} = dh_{SSB}\Big|_{t_2} - dh_{SSB}\Big|_{t_1} + \varepsilon$$

Это уравнение является основным для всех методов оценки *dh_{SSB}*, основанных только для данных альтиметра.

Двенадцатая Международная Школа-семинар «Спутниковые методы и системы исследования Земли», Таруса, 21–25 марта 2024 г.

Параметрические модели поправки *dh_{emb}* для различных спутников

	SWH	1 Carl	1 1	2.42			and the second
спутник (Альтиметр)	a 1	a ₂	a ₃	a 4	a 5	a ₆	Пазвание модели
	-0,02803	0,0441					BM2
SEASAI (ALT)	0,03265	0,0794		0,0389			BM3
(ALI)		0,0593		0,0476			BM2
	0,0066		0,0015				BM2
	0,0056		0,00091				BM2
	0,0327	-0,0022	0				BM2
GEUSAI (GKA)	0,0245	-0,0034	0,00122				BM3
	0,035	0,00018					BM2
	-0,025		-0,00145			0,0002	BM3
ERS-1	-0,047		-0,0035		0,000160		BM3
(RA)	-0,075043	0,000098	0,001413		-0,001790		BM4
ERS-2	-0,048		-0,0026		0,000126		BM3
(RA)	-0,068219	0,000082	0,001465		-0,001701		BM4
GFO-1 (GFO-RA)	-0.055742	0,000153	0,002743		-0,003756		BM4
TOPEX/ Poseidon (NRA (TOPEX))	0,0029		0,0038		-0,000155		BM3
	0,0047		0,0038		-0,00016		BM3
	0,0036		-0,0045		0,00019		BM3
	-0,037			0,00029			BM2
	-0,019	0,0027	-0,0037		0,00014		BM4

 $\beta = \frac{dh_{SSB}}{h} = a_1 + a_2 h_{SWH} + a_3 U_{10} + a_4 h_{SWH}^2 + a_5 U_{10}^2 + a_6 h_{SWH} U_{10}$

Двенадцатая Международная Школа-семинар «Спутниковые методы и системы исследования Земли», Таруса, 21–25 марта 2024 г.

Параметрические модели поправки *dh_{emb}* для различных спутников

	SWH	1	1	- 1941			
спутник (Альгиметр)	a ₁	a ₂	a 3	a 4	a 5	a ₆	пазвание модели
	-0,021	0,0028	-0,0037		0,00014		BM4
TOPEX/ Poseidon	-0,030		-0,00358		0,00011		BM3
(NRA (TOPEX))	-0,030578	0,000127	0,002776		-0,002962		BM4
	-0,032113	0,000101	0,002992		-0,002780		BM4
	-0,059			0,00016			BM2
TOPEX/ Poseidon	-0,040		-0,0025		0,00012		BM3
(Poseidon)	-0,047	0,0010	-0,0023		0,00011		BM4
	-0,062778	0,000057	0,001894		-0,001194		BM4
	0,0317	0,0038	-0,00052		-0,000018		BM4
Jason-1 (Poseidon-2)	-0,0200	-0,0106	0,0027		-0,000095		BM4
	-0,034376	0,000083	0,001746		-0,001969		BM4
ENVISAT (RA-2)	-0,052849	0,000068	0,001746		-0,001713		BM4
Jason-2 (Poseidon-3)	0,0398	0,0023	-0,0014		-0,000059		BM4
	-0,0625	-0,0032	0,0020		-0,000029		BM4
Jason-3 (Poseidon-3B)	0,0347	0,0034	-0,000722		0,0000263		BM4
	-0,0966	0,0029	0,0035		0,0001034		BM4
Sentinel-3A (SRAL)	0,0068	0,0039	-0,0027		0,0000936		BM4
	-0,0381	-0,000579	-0,000078		0,0000274		BM4

Российский космический аппарат «ГЕО-ИК-2» №12 характеристики «ГЕО-ИК-2»

АО «РЕШЕТНЁВ»
Минобороны России
Альтиметрия
4 июня 2016 г.
5 лет
Околокруговая солнечно-синхронная
954 км
99,28°
887 кг

Двенадцатая Международная Школа-семинар «Спутниковые методы и системы исследования Земли», Таруса, 21–25 марта 2024 г.

 $dh_{SSB} = a_0 + h_{SWH} (a_1 + a_2 h_{SWH} + a_3 U + a_4 U^2)$

Результаты расчётов для Мирового океана

Временной интервал (год)201820192018-201920182019Количество точек84 67789 054174 15723 070 82715 939 198Количество точекa00,000570,001890,001230,012140,02868a1-0,06288-0,06212-0,06252-0,07136-0,06260a20,000940,001140,001040,000540,00016		По точка	и пересечен	ия (метод 1)	По точкам вдоль треков изомаршрутной программы (метод 2)			
Количество точек84 67789 054174 15723 070 82715 939 198Коэффициенты модели a_0 0,000570,001890,001230,012140,02868 a_1 -0,06288-0,06212-0,06252-0,07136-0,06260 a_2 0,003030,002820,002930,003280,00240 a_3 0,000940,001140,001040,000540,00016	Временной интервал (год)	2018	2019	2018–2019	2018	2019		
Коэффициенты модели a ₀ 0,00057 0,00189 0,00123 0,01214 0,02868 a ₁ -0,06288 -0,06212 -0,06252 -0,07136 -0,06260 a ₂ 0,00303 0,00282 0,00293 0,00328 0,00240 a ₃ 0,00094 0,00114 0,00104 0,00054 0,00000	Количество точек	84 677	89 054	174 157	23 070 827	15 939 198		
a_0 0,000570,001890,001230,012140,02868 a_1 -0,06288-0,06212-0,06252-0,07136-0,06260 a_2 0,003030,002820,002930,003280,00240 a_3 0,000940,001140,001040,000540,00016 a_4 -0,00004-0,00005-0,00004-0,000030,00000				Коэффициент	ы модели	1		
a_1 -0,06288-0,06212-0,06252-0,07136-0,06260 a_2 0,003030,002820,002930,003280,00240 a_3 0,000940,001140,001040,000540,00016 a_1 -0,00004-0,00005-0,00004-0,000030,00000	a ₀	0,00057	0,00189	0,00123	0,01214	0,02868		
a2 0,00303 0,00282 0,00293 0,00328 0,00240 a3 0,00094 0,00114 0,00104 0,00054 0,00016 a1 -0,00004 -0,00005 -0,00004 -0,00003 0,00000	a ₁	-0,06288	-0,06212	-0,06252	-0,07136	-0,06260		
a ₃ 0,00094 0,00114 0,00104 0,00054 0,00016 a ₁ -0.00004 -0.00005 -0.00004 -0.00003 0.00000	a ₂	0,00303	0,00282	0,00293	0,00328	0,00240		
	a ₃	0,00094	0,00114	0,00104	0,00054	0,00016		
	a 4	-0,00004	-0,00005	-0,00004	-0,00003	0,00000		

Двенадцатая Международная Школа-семинар «Спутниковые методы и системы исследования Земли», Таруса, 21–25 марта 2024 г.

Двенадцатая Международная Школа-семинар «Спутниковые методы и системы исследования Земли», Таруса, 21–25 марта 2024 г.

изомаршрутной программы (справа) за 2018 год

Результаты расчётов *dh*_{SSB} для Мирового океана по коэффициентам, рассчитанным по точкам пересечения (слева) и по точкам вдоль треков изомаршрутной программы (справа) за 2019 год

Результаты расчётов *dh*_{SSB} для Мирового океана по коэффициентам, рассчитанным по точкам пересечения (слева) за 2018–2019 годы

 $dh_{SSB} = a_0 + h_{SWH} (a_1 + a_2 h_{SWH} + a_3 U + a_4 U^2)$

Результаты расчётов для Чёрного моря									
	По то	чкам пере (метод 1	сечения)	По точкам вдоль треков изомаршрутной программы (метод 2)					
Временной интервал (год)	2018	2019	2018–2019	2018	2019	2018-2019			
Количество точек	56	42	99	20 965	13 065	67 948			
Коэффициенты модели									
a ₀	0,02581	0,08109	0,05208	0,08064	-0,00763	0,07120			
a 1	0,03785	-0,20239	-0,01144	-0,12543	-0,06024	-0,08921			
a ₂	-0,03065	0,03926	-0,01979	0,01009	0,00690	0,00322			
a 3	-0,00840	-0,09299	-0,02091	-0,00347	-0,00455	-0,00054			
a ₄	0,00032	0,00540	0,00089	0,00018	0,00031	0,00004			

Двенадцатая Международная Школа-семинар «Спутниковые методы и системы исследования Земли», Таруса, 21-25 марта 2024 г.

24

Результаты расчётов *dh*_{SSB} для Чёрного моря по коэффициентам, рассчитанным по точкам пересечения (слева) и по точкам вдоль треков изомаршрутной программы (справа) за 2018 год

Результаты расчётов *dh_{SSB}* для Чёрного моря по коэффициентам, рассчитанным по точкам пересечения (слева) и по точкам вдоль треков изомаршрутной программы (справа) за 2019 год

Результаты расчётов *dh*_{SSB} для Чёрного моря по коэффициентам, рассчитанным по точкам пересечения (слева) и по точкам вдоль треков изомаршрутной программы (справа) за 2018–2019 годы

Заключение

По результатам исследований, получены следующий результаты:

• Средняя разность dh_{SSB} для Мирового океана между 2018 г. и 2019 г. по коэффициентам, рассчитанным по точкам пересечения (метод 1) и по точкам вдоль треков изомаршрутной программы (метод 2), составляет –1,32 мм и –27,94 мм соответственно. Среднеквадратическое отклонение (СКО) для каждого метода – 3,95 мм (метод 1) и 28,78 мм (метод 2), коэффициент корреляции – 0,9997 (метод 1) и 0,9993 (метод 2). Такое различие обусловлено тем, что разность во времени между измерениями по методу 1 ограничивалось 10 сутками, а по методу 2 – кратное периоду изомаршрутных измерений, т.е. 27, 54 суток.

• Средняя разность dh_{SSB} для Мирового океана между коэффициентами, рассчитанными методу 1 и методу 2 за 2018 г. и 2019 г. составляет 6,93 мм и –17,45 мм соответственно. СКО – 14,12 мм (2018 г.) и 19,01 мм (2019 г.), коэффициент корреляции – 0,9981 (2018 г.) и 0,9975 (2019 г.). Показатели корреляции для обоих случаев, а также небольшая средняя разница и СКО, говорят о том, что данные методы могут использоваться независимо друг от друга, для определения поправки SSB.

Заключение

• Средняя разность dh_{SSB} между Мировым океаном и Чёрным морем по коэффициентами, рассчитанным по методу 1 за 2018 г. и 2019 г. составляет 19,49 мм и 460,52 мм соответственно. СКО – 90,99 мм и 622,63 мм, коэффициент корреляции – 0,8805 и 0,7616. Для Чёрного моря использовалось сравнительно малое количество информации (2018 г. – 56 точек; 2019 г. – 42 точки), что сказалось на таких показателях как средняя разность, СКО и коэффициент корреляции. Волновой режим в Мировом океане и Чёрном море различается между собой. Высота волн зыби (доминирующих волн) в Чёрном море меньше, чем в Мировом океане. Средняя значимая высота волны в Черном море составляет \approx 0,9 м, а в Мировом океане – ≈ 2 м.

• Средняя разность dh_{SSB} между Мировым океаном и Чёрным морем по коэффициентами, рассчитанным по методу 2 за 2018 г. и 2019 г. составляет 17,79 мм и 28,45 м соответственно. СКО – 53,79 мм и 34,54 мм, коэффициент корреляции – 0,9928 и 0,9491. Увеличение количества обрабатываемой информации улучшило результаты расчётов. Для внутренних и окраинных морей следует выбирать метод 2 для расчёта коэффициентов модели SSB.

Литература

- 1. Jackson F.C. The reflection of impulses from a nonlinear random sea // Journal of Geophysical Research: Oceans. 1979. Vol. 84. No. C8. P. 4939-4943. doi: 10.1029/JC084iC08p04939.
- 2. Srokosz M.A. On the joint distribution of surface elevation and slopes for a nonlinear random sea, with an application to radar altimetry // Journal of Geophysical Research: Oceans. 1986. Vol. 91. No.C1. P. 995-1006. doi: 10.1029/JC091iC01p00995.
- 3. Lagerloef G.S.E. Comment on "On the joint distribution of surface elevations and slopes for a nonlinear random sea, with an application for radar altimetry" by M.A. Srokosz // Journal of Geophysical Research: Oceans. 1987. Vol. 92. No.C3. P. 2985-2987. doi: 10.1029/JC092iC03p02985.
- 4. Parsons C.L., Miller L.S. A laboratory study of the electromagnetic bias of rough surface scattering by water waves // IEEE Transactions on Geoscience and Remote Sensing. 1990. Vol. 28. No. 6. P. 1001-1011. doi: 10.1109/36.62624.
- 5. Bar D.E., Agnon Y. A fractal model for the sea state bias in radar altimetry. //Nonlinear Processes in Geophysics. 1997. Vol. 4. No. 4. P. 213-222. doi: 10.5194/npg-4-213-1997.
- 6. Peng F., Deng X. Improving precision of high-rate altimeter sea level anomalies by removing the sea state bias and intra-1-Hz covariant error //Remote Sensing of Environment. 2020. Vol. 251. P. 112081. doi: 10.1016/j.rse.2020.112081.
- 7. Pires N., Fernandes M.J., Gommenginger C., Scharroo R. A conceptually simple modeling approach for Jason-1 sea state bias correction based on 3 parameters exclusively derived from altimetric information //Remote Sensing. 2016. Vol. 8. No. 7. P. 576. doi: 10.3390/rs8070576.

Двенадцатая Международная Школа-семинар «Спутниковые методы и системы исследования Земли», Таруса, 21-25 марта 2024 г.

Двенадцатая Международная Школа-семинар «Спутниковые методы и системы исследования Земли», Таруса, 21–25 марта 2024 г.

© 2024, ГЦ РАН, МГТУ, МИЭТ, С.А. Лебедев

4