Оценка возможностей и перспектив космической инфракрасной диагностики техносферы

В.К. Шухостанов¹, Л.А. Ведешин², В.В. Егоров³, В.Г. Реутов⁴, А.Г. Цыбанов¹

¹ Отделение «Диагностика и безопасность техносферы» РАЕН ² Президиум РАН ³ Институт космических исследований РАН ⁴ ОАО «Корпорация «Фазотрон – НИИР» 119991 Москва, Ленинский проспект, 6 *E-mail: <u>v-p@diatech.ru</u>*

Актуальность задач космической диагностики техносферы связана с участившимися в последние годы техногенными катастрофами и влиянием их последствий на глобальную и региональную экологию. В этой связи целесообразно оценить возможности средств дистанционного инфракрасного зондирования для мониторинга состояния объектов техносферы, таких как магистральные и производственные трубопроводы, хранилища углеводородного сырья, а также жидких и твердых отходов, железных и шоссейных дорог, дамб, плотин и др. Современные космические инфракрасные сенсоры имеют линейное пространственное разрешение порядка нескольких десятков метров и температурную чувствительность сотые и десятые доли градуса, что позволяет с помощью получаемой ими информации обнаруживать, идентифицировать и оценивать состояние большинства объектов техносферы и окружающей их среды. В частности, результаты расчетов требуемых значений температурных контрастов объектов для заданных величин вероятности правильного обнаружения и ложной тревоги подтверждают правильность приведенных выше утверждений.

Введение

Мониторинг природной среды и техногенных объектов является основой жизнедеятельности современного общества. С одной стороны это обусловлено возможностями, предоставляемыми достигнутым уровнем научно-технического развития, с другой – потребностями управления природными и техногенными процессами, вызванными возросшим влиянием человеческой деятельности на окружающую среду, способным привести как к позитивным, так и к негативным последствиям. Для развития средств и методов мониторинга необходимо постоянно анализировать роль сенсоров различного типа и базирования, изменяющуюся с возникновением новых возможностей и новых задач, что позволяет совершенствовать методы и организацию мониторинга. Результаты такого рода анализа, проведенного в связи задачами диагностики техносферы, рассматривается ниже.

Мониторингу объектов техносферы присущи ряд особенностей, что позволяет выделять соответствующие задачи в особую группу. <u>Во-первых</u>, об объектах техносферы и их природном окружении имеется значительная априорная информация.

<u>Во-вторых</u>, целью диагностики объектов техносферы является оценка <u>изменения</u> их состояния и параметров. При этом могут широко использоваться модели объектов техносферы, идентификация которых может быть выполнена заранее и с хорошей точностью.

<u>В-третьих</u>, для объектов техносферы характерен значительный диапазон необходимых частот зондирования, соответствующий значительному диапазону скоростей рассматриваемых процессов и постоянных времени используемых циклов мониторинга – управления. Долговременные изменения могут иметь характерные постоянные времени, измеряющиеся месяцами (например, сезонные изменения) или даже годами, постоянные времени быстрых изменений измеряются часами или сутками.

<u>В-четвертых</u>, индикаторами, характеризующими состояние объектов техносферы, могут быть как характеристики самого объекта, так и очень часто характеристики окружающей его

природной среды – температура, отражательные и излучательные характеристики почвы, состояние растительности, состав воздуха и т.п., – что делает необходимым использование при диагностике объектов техносферы различных сенсоров и систем мониторинга.

<u>В-пятых</u>, особенности мониторинга объектов техносферы определяются наличием различных этапов жизненного цикла данных объектов (проектирование, эксплуатация, чрезвычайные ситуации) и различных групп экспертов, использующих данные мониторинга, в том числе экспертов, представляющих организации, осуществляющие проектирование, строительство и эксплуатацию объектов, и общественные, правительственные и международные организации, обеспечивающие контроль за деятельностью данных объектов. Последнее, например, означает, что космический независимый мониторинг объектов техносферы может быть необходим и в случае, когда на объекте находится строящий или эксплуатирующий его персонал и, казалось бы, состояние объекта может быть определено с использованием лишь наземных средств мониторинга.

ИК-сенсоры дистанционного зондирования (ДЗ) имеют большое значение для мониторинга объектов техносферы, так как важными индикаторами их состояния и окружающей природной среды являются температурные распределения и спектральный состав излучения. Космическое базирование сенсоров весьма эффективно при мониторинге объектов техносферы, так как обеспечивает регулярное наблюдение весьма протяженных объектов, расположенных в труднодоступных районах [1-3]. Данные космических ИК-сенсоров могут использоваться при решении задач как проектирования и строительства, так и эксплуатации объектов техносферы, например, при прокладке магистральных трубопроводов, строительстве шоссейных дорог, тоннелей, дамб, плотин и других крупных инженерных сооружений, оценке состояния объектов, включая их экологическую безопасность. Следует подчеркнуть, что бортовые сенсоры ИК-диапазона всегда занимали особое место среди других средств ДЗ, являясь элементами ряда информационных циклов мониторинга – управления состоянием природных и антропогенных объектов, в том числе наряду с сенсорами иных типов [4-6].

Использование инфракрасного диапазона длин волн и космического базирования сенсора имеет как ряд преимуществ, так и определенные недостатки. В частности, вследствие больших дальностей и относительно больших длин волн реализуемое разрешение относительно велико по сравнению, например, с видимым диапазоном длин волн и авиационным базированием датчика, но существенно лучше разрешения СВЧ–радиометров. Для обеспечения достаточно высокой частоты наблюдений определенных объектов, в том числе с учетом сильного влияния погодных условий, необходимо использование систем космических аппаратов (КА).

Задачи мониторинга и основные индикаторы состояния объектов техносферы

Типовыми задачами ИК-мониторинга объектов техносферы являются проведение предпроектных исследований будущих трасс и площадей, выделяемых под строительство объектов, контроль хода строительства указанных объектов, контроль состояния объектов техносферы, контроль экологического состояния природных систем в зоне расположения объектов. Пространственные и временные масштабы этих задач могут сильно варьироваться, что требует адекватного выбора типа носителя. В табл. 1 приведены примеры задач ИК-мониторинга объектов нефтегазовой отрасли (НГО) и требования, предъявляемые к параметрам бортовых сенсоров. При решении этих задач использование ИК-сенсоров космического базирования может быть весьма эффективным.

Задачи мониторинга	Методы решения	Ландшафтные индикаторы	Требования
	задач	(характерные размеры)	
Поиск и доразведка	Выделение	Линеаменты и купола (0,11	Разрешение
месторождений	линеаментов и	км)	520 м
	куполов		
Обнаружение и контроль	Определение пло-	Площади обнажения трубы,	Чувствительн
участков разрушения	щадей оголения	изменения и аномалии	ость 0,1 К
обвалования трубопровода.	трубопровода,	ландшафта (10100 м ²)	
Контроль растепления и	участков		
промерзания грунта.	растепления и		
Обнаружение места и	промерзания.		
количественная оценка	Выявление		
масштабов утечки газа.	участков		
	аномально низких		
	температур.		
Обнаружение	Определение пло-	Аномалии рельефа	Чувствительн
неблагоприятных для	щадей оползней и	(оползневые наплывы,	ость 0,2 К
объектов НГО природных	карста.	карстовые воронки и	
явлений (оползни, карст и	Оконтуривание	впадины), характер трещино-	
т.п.)	участков актив-	ватости, изменение	
	ной тектоники.	геологичес-ких слоев и	
	-	структур и др. (0,1100 км ²).	
Экологический мониторинг	Оконтуривание	Площадь пятен, аномалии	Разрешение
в районах расположения	загрязненных	разви-тия растительности,	3 м
объектов НГО (загрязнение	участков и	изменения уровня грунтовых	Чувствительн
почвы углеводородами,	участков с	вод, наруше-ния почвенного	ость 0,2 К
изменения ландшафта,	измененным	покрова, гари, просадки и	
растительного покрова,	температурным	вспучивание, эрозия (~ 10 м ²)	
свойств и структуры почв,	распределением,		
температурного распре-	ландшафтное,		
деления, загрязнение воднои	вегетационное и		
поверхности и льда)	почвенное раио-		
	нирование	п	0.5
Производственно-экологи-	контроль	Динамика и направление	Ошиока
ческии мониторинг в	динамики	дреифа ледовых полеи.	направления
раионах разраоотки морских	ледовых полеи.	Поверхностная структура	дреифа
месторождении (ледовая	площадная	морской акватории (длина	20 град
обстановка, оперативное	съемка ледовых	контуров до 1000 км).	газрешение
оонаружение аварииных	полеи. гепловая	излучательная и	1 KM
ситуации на объектах пт О)	оветка зоны	и на Прями на призначи	
	аварии.	льда. прямые признаки	
		аварии.	

Таблица 1. Задачи системы ИК-мониторинга и требования к параметрам сенсоров

Перепады температуры вблизи прохождения трасс нефте- и газопроводов и городских коммуникаций водоснабжения составляют 2 К и до 2,5 К при наличии утечек из труб. Такие объекты, расположенные на глубине до 1 м, уверенно обнаруживались с помощью наземного ИК-радиометра, обладающего чувствительностью около 0,2 К. При аварийном разливе нефти в морских акваториях температурный контраст границы «нефть – вода» достигает 1,5 К. В ночное время этот контраст отрицательный (нефть холоднее воды), а в дневное – положительный, поскольку пленка сильнее поглощает солнечное излучение и становится более теплой, чем вода.

Причинами возникновения температурных контрастов на земной поверхности, связанных с наличием объектов техносферы и динамикой их состояния, являются различие в интенсивности поглощения солнечной радиации материалом самого зондируемого объекта и покрывающего его грунта, различие свойств грунта на трассе трубопровода или в районе расположения подземного хранилища по сравнению со смежными участками почвы, передача тепла от подповерхностного объекта поверхностному слою почвы и различие в характере растительности в районе расположения объекта техносферы.

При наблюдении с космических носителей характерные температурные контрасты, конечно, будут иметь меньшие значения, если относительная доля площади, занимаемой объектом в элементе разрешения бортового ИК-сенсора, будет меньше 1, что потребует соответствующего повышения температурной чувствительности используемых ИК-сенсоров.

Экспертные оценки эффективности решения задач мониторинга объектов техносферы показывают, что доли решаемых задач с использованием космических ИК-сенсоров различных типов при предпроектных исследованиях и контроле хода строительства составляют от 70 до 90%, а при контроле состояния объектов техносферы, в том числе их экологического состояния – от 30 до 90%. Весьма эффективно задачи дистанционной диагностики могут решаться с помощью космических спектрометров, которые находят все большее применение в ДЗ Земли с космических носителей [7]. Для повышения надежности решения задач диагностики объектов техносферы целесообразно проводить их одновременное наблюдение с помощью ИК-сенсоров и радаров с синтезированной апертурой, обладающих высоким пространственным разрешением, что позволит повысить надежность и частоту наблюдений объектов [8].

Основные характеристики ИК-сенсоров

В соответствии с терминологией, установленной Комитетом научно-технической терминологии АН СССР, инфракрасное излучение (Infrared Radiation) – это оптическое излучение с длинами волн в диапазоне от 0,76 мкм до 1 мм [9]. На практике под ИК–излучением часто понимают давно и хорошо освоенный диапазон длин волн от 0,76 мкм до 15...20 мкм. Выделяют следующие диапазоны длин волн инфракрасного излучения: ближний – 0,74...1,3 мкм, окна прозрачности в диапазоне 1,3...8 мкм и тепловой ИК диапазон – 8...12 мкм [10].

Рис. 1. Два основных параметра сенсоров: пространственное и спектральное разрешение

Принимаемое космическим сенсором ИК–излучение включает как собственное излучение земной поверхности и объектов, расположенных на поверхности Земли и в почве, так и отраженное земной поверхностью солнечное излучение, а также собственное излучение атмосферы и отражаемое атмосферой солнечное излучение. Собственное излучение атмосферы включает тепловое излучение атмосферы и ее свечение. Свечение атмосферы определяется разнообразными физическими и химическими процессами, имеющими место при взаимодействии солнечного излучения с атмосферными газами. Наиболее интенсивные спектральные линии свечения атмосферы, расположенные в ИК–диапазоне, обусловлены следующими молекулами [11]: O_2 (0,768; 0,845; 0,86 мкм); N_2 (0,854; 0,872; 0,891; 1,051 мкм); N_2^+ (0,915; 1,104; 1,452; 1,511; 1,614 мкм); O_3 (1,466 мкм).

Рис. 2. Зависимость чувствительности от пространственного разрешения

Основными характеристиками оптико-электронных систем (ОЭС), определяющими характеристики систем инфракрасного мониторинга, являются спектральный диапазон $\Delta\lambda$, температурная чувствительность ΔT , угловое разрешение $\delta \phi$ и угловая ширина полосы захвата Ω . Связь основных характеристик ИК-сенсора можно представить в виде:

$$\Lambda = \frac{\Delta T \delta \varphi \Delta \lambda}{\sqrt{\Omega}} = \frac{4c_2 \sqrt{\nu/r}}{c_1 k_{OMT}} \times \frac{1}{\beta} \left(\frac{F}{D_A}\right) \times \frac{1}{D^* \sqrt{N_t N_n}} \times \frac{\lambda^3}{q_A(\lambda) \varepsilon(\lambda)} \times \Psi\left(\frac{c_2}{\lambda T}\right),$$
$$\Psi(x) = e^x \left[\frac{1 - e^{-x}}{x}\right]^2,$$

где $c_1=2\pi c^2 h$; $c_2=ch/k$; $k=1,38\cdot10^{-23}$ Дж·К⁻¹ – постоянная Больцмана; $h=6,63\cdot10^{-34}$ Дж·с – постоянная Планка; c – скорость света в вакууме; λ – длина волны; T – температура объекта; $v \approx 8$ км/с – скорость КА; r – дальность зондирования; $q_A(\lambda)$ – коэффициент ослабления излучения в атмосфере; $\varepsilon(\lambda)$ – степень черноты участка земной поверхности; k_{OMT} – коэффициент ослабления при распространении излучения в оптико-механическом тракте ОЭС; D^* – обнаружительная способность материала приемника; D_A , F – диаметр апертуры и фокусное расстояние ОЭС; β – коэффициент, принимающий значения от 1,22 (в случае дифракционного разрешения) до 2...3; N_t ,

 N_n – число строк и столбцов матричного приемного устройства. При больших длинах волн значение $\Psi(c_2/\lambda T)$ близко к 1 и приближенно можно записать:

$$\Lambda = \frac{4c_2\sqrt{\nu/r}}{c_1k_{OMT}} \times \frac{1}{\beta} \left(\frac{F}{D_A}\right) \times \frac{1}{D^*\sqrt{N_tN_n}} \times \frac{\lambda^3}{q_A(\lambda)\varepsilon(\lambda)}$$

Рис. 3. Зависимость чувствительности от спектрального разрешения

Рис. 4. Взаимосвязь числа каналов и спектрального разрешения

Параметр Л представляет собой некоторую обобщенную характеристику сенсора и дает качественную связь между характеристиками ИК-сенсоров различных диапазонов длин волн. Однако на его основании нельзя делать выводы о предпочтительности того или иного диапазона, так как излучение на каждом участке спектра характеризует определенные процессы,

происходящие в объектах техносферы и информативность соответствующих измерений может зависеть от длины волны значительно сильнее, чем от других характеристик сенсора. В этой связи может представлять интерес практически не освоенный к настоящему времени диапазон так называемых тераволн – ИК-излучения с длинами волн десятки и сотни микрон, в качестве приемников которых могут использоваться болометры, прежде всего, сверхпроводящие, имеющие обнаружительную способность до 10¹² Вт⁻¹·Гц^{1/2}·см [12]. Значение Л в диапазоне тераволн составляет порядка 10⁻⁹ К·м. При диаметре апертуры системы около 0,6 м и длине волны 100 мкм угловое разрешение составит примерно 200 мкрад, а температурная чувствительность при $\Delta \lambda = 10$ мкм и $\Omega = 0.02$ рад – около 0.05 К. Спектральный диапазон тераволн, вероятно, может быть полезен при исследованиях атмосферы. В частности, при излучении газов изменения только вращательной энергии дают линии в диапазоне длин волн 25...1000 мкм. Если одновременно происходят изменения и колебательной энергии, то наблюдаются полосы в области 2,25...25 мкм [13]. В настоящее время приемники диапазона тераволн используются, в основном, в астрономии для наблюдения холодных объектов. Например, российский приемник диапазона тераволн, созданный сотрудниками МГУ и их коллегами из научно-исследовательского центра «РАД», оказался чувствительнее аналогичного, входящего в состав телескопа «Хаббл» [14]. Характеристики ИК-каналов некоторых сенсоров космического базирования приведены в табл. 2. Для 10-тимикронных каналов наименьшие значения обобщенной характеристики Л имеют российская система «Климат-С-М1» (≈ 0,4·10⁻¹⁰ К·м), японская ASTER (≈ 10⁻¹⁰ К·м) и американские SEBASS ($\approx 0.7 \cdot 10^{-10}$ К·м) и Aerojet General Thermal Imaging System ($\approx 0.5 \cdot 10^{-10}$ К·м).

Рис. 5. Взаимосвязь полосы обзора и пространственного разрешения

Наименование	Спектральные диапазоны и	Полоса	Угловое	Чувствитель-
прибора (страна)	разрешение, мкм	захвата, мрад	разреше-	ность, К
			ние, мрад	
МСУ-В (Россия)	0,76-0,90; 0,92-1,02; 1,46-1,65; 2,07-	300	0,080,4	0,4
	2,26; 10,3-12,0			
ОС-301 (Россия)	0,76-1,0; 8,0-12,0	100	0,1	0,2
AVHRR (CIIIA)	0,725-1,10; 3,55-3,93; 10,3-11,3; 11,4-	150 град	1,4	0,2 (над морем)
	12,4	-		1,0 (над сушей)
САВР-С-М1 (Россия)	7,5-9,2; 10,2-11,5	80	0,1	0,3-0,5
CABP-C-M2	1,55-1,75; 1,75-2,10; 2,10-2,35; 7,5-	80	0,1	0,3-0,5
(Россия)	9,2; 10,2-11,5			
ASTER (Япония)	12 диапазонов от 0,76 до 11,65 мкм	80	0,020,13	0,3
MODIS (CIIIA)	9 диапазонов от 7,175 до 14,385 мкм	120 град	1,4	0,052
Климат-С-М1	1,55-1,75; 1,75-2,10; 2,10-2,35; 7,5-	96 град	0,44	0,1
(Россия)	9,2; 10,2-11,5; 11,5-13,5			
SEBASS (CIIIA)	2,1-5,4 (128 каналов, 25 нм)	120	1	0,5
	7,8–13,6 (128 каналов, 50 нм)			
Agema 1000 (CIIIA)	8-12	100	0,15	< 0,2
FSI SAFIRE (CIIIA)	8-12	250×500	1,5	< 0,1
Agema 570 (CIIIA)	7,5-13	300×400	1,3	0,1
Agema 510 (CIIIA)	3-5	150×300	1×3	0,1
Aerojet General Ther-	3-5	150×200	0,08	< 0,15
mal Imaging System				
(США)				
FSI PRISM (CIIIA)	3-5	220×300	1	0,2
Thermovision- 1000	3-5	30×300	1,3	0,1
(CIIIA)				

Таблица 2. Сенсоры ИК-каналов сенсоров космического базирования

Технический облик ИК–сенсоров космического базирования, используемых при мониторинге объектов техносферы

Проведенный анализ позволяет определить целесообразный облик ОЭС космического базирования ИК-диапазона длин волн, ориентированных на мониторинг объектов техносферы. <u>Во-первых</u>, такая ОЭС должна работать в спектральном диапазоне 8...12 мкм, что обеспечивает высокую чувствительность системы к собственному излучению объектов, расположенных на земной поверхности, при достаточно хорошем угловом разрешении. Дополнительная информация о спектральном составе излучения, в том числе в других диапазонах ИК-спектра, может быть получена от других космических систем, предназначенных для мониторинга атмосферы, природных объектов, сельскохозяйственных угодий и т. п. В частности, диагностика объектов техносферы может использовать данные о загрязнении окружающей их атмосферы, которые могут быть получены системами оптического экологического мониторинга космического базирования, использующими спектрометрию прямого и рассеянного солнечного излучения. Также могут использоваться данные о состоянии растительности и почвы вблизи объекта техносферы, для получения которых эффективно использование видимого и ближнего ИК диапазона длин волн.

<u>Во-вторых</u>, для обеспечения высокого пространственного разрешения целесообразно использование максимального диаметра апертуры системы. В случае космического базирования в настоящее время представляется практически реализуемой ОЭС, работающая в диапазоне 8...12 мкм, обладающая диаметром апертуры около 1 м. При этом реализуемое угловое разрешение

составит около 12 мкрад, что при высоте орбиты КА 500 км будет соответствовать пространственному разрешению 6 м. Масса рефлектора телескопа ОЭС оценивается величиной 200...250 кг, а масса всей системы – 300...400 кг.

<u>В-третьих</u>, при мониторинге объектов техносферы отсутствует необходимость больших полос обзора космического ИК-сенсора, так как положение указанных объектов на земной поверхности известно достаточно точно. Например, при использовании матричного приемного устройства, имеющего 256×256 пикселей, при разрешении 12 мкрад размеры кадра на земной поверхности составят 1,5×1,5 км², что вполне приемлемо для решения большинства задач диагностики объектов техносферы.

При обработке данных мониторинга перспективно использование математических моделей диагностируемых объектов, что при идентификации модели с полученным изображением позволяет получить оценки параметров модели, в том числе и геометрических, с ошибками существенно меньшими физического разрешения системы.

Рис. 6. Влияние разрешения на чувствительность

Рис. 7. Влияние разрешения на полосу обзора

Литература

- 1. *Р.Д. Мухамедяров*. Аэрокосмические технологии мониторинга состояния нефтегазопроводов, хранилищ и экологии окружающей среды. 8-ая Международная деловая встреча «Диагностика 98». СМИ, апрель 1998, т.2. М., с. 85-97, с. 107-116.
- 2. *И.И. Мазур, Л.А. Ведешин, В.И. Семенов.* Дистанционное зондирование для экоменеджмента нефтегазопромышленного комплекса России. Материалы III Конференции ООН по исследованию и использованию космического пространства в мирных целях, Вена, 19-30 июля 1999, 10 с.
- 3. *В.Г. Бондур*. Предложения по сотрудничеству с предприятиями нефтегазового комплекса в области аэрокосмического мониторинга. МЦЭМ и ИТ, М., 2000, 30 с.
- 6. *B.M. Balter, L.A. Vedeshin, V.V. Egorov, A.I. Kanaschenkov*. Modeling aerospace monitoring. XX-annual ESRI users. San Diego, USA, 24-28 June 2000.
- 7. Б.М. Балтер, В.В. Егоров. Природные и информационные циклы в экологическом моделировании и дистационном зондировании. Концепция и принципы выбора объектов мониторинга. Исслед. Земли из космоса, 1993, № 6, с. 19-25.
- 10. *Непобедимый С.П., Родионов И.Д., Воронцов Д.В. и др.* Гиперспектральное дистанционное зондирование Земли. Доклады Академии наук, 2004. т. 397, № 1, с. 45-48.
- 11. Под ред. А. И. Канащенкова. Аэрокосмический радиолокационный мониторинг. –М.: Радиотехника, 2006.
- 12. Л. З. Криксунов. Справочник по основам инфракрасной техники. М.: Сов. радио, 1978, с.21.
- 13. С. В. Гарбук, В. Е. Гершензон. Космические системы дистанционного зондирования Земли. М.: Издательство А и Б, 1997.
- 14. Под ред. В. В. Клюева. Безопасность России. Правовые, социально-экономические и научнотехнические аспекты. Экологическая диагностика. – М.: Машиностроение, 2000.
- 15. Пер. с нем. под ред. А. П. Напартовича. Справочник по лазерной технике. М.: Энергоатомиздат, 1991.
- 16. Под ред. Р. Макола. Пер. с англ. под ред. А. В. Шилейко. Справочник по системотехнике. М.: Сов. радио, 1970, с.246.
- 18. <u>http://www.inauka.ru/Известия Науки МЫ УСЛЫШИМ, КАК ЛЕТЯТ АСТЕРОИДЫ.htm</u>