Технологии спутникового мониторинга в исследовании лесных островов большеземельской тундры

В.В. Елсаков

Институт биологии Коми НЦ УрО РАН, Сыктывкар E-mail: elsakov@ib.komisc.ru

В работе проведен анализ возможностей использования технологий спутникового мониторинга применительно картирования сообществ еловых редколесий Большеземельской тундры. Показано, что данный класс растительных сообществ обладает индивидуальными характеристиками оптических, температурных и радиолокационных показателей, что может использоваться как дополнительные критерии для повышения уровня корректности при классификации растительного покрова, при выявлении экологических и структурных особенностей их организации.

Введение

Массивы островных и пойменных ельников, изолированные от северной границы распространения ели сибирской (*Picea obovata*) в суббореальный период голоцена, достаточно широко представлены на отдельных участках южных гипоарктических тундр территории Ненецкого автономного округа и Республики Коми. В последние годы существенно возрос интерес к исследованиям «лесных островов» тундры, связанный с проблемой изменения климата, генетического своеобразия изолированных популяций растений и флористическими особенностями сообществ. В отечественной литературе достаточно подробно представлены результаты исследований отдельных компонентов данных экосистем: почв [1], флористического состава растительных сообществ [2].

Цель настоящей работы заключалась в исследовании возможностей использования данных дистанционного зондирования (ДДЗ) высокого разрешения, применительно анализа пространственного распределения участков островных ельников и их количественных характеристик.

Материалы и методы

Данные дистанционного зондирования спутника Landsat 7 сенсор ETM+ получены для 1.06 и 21.07 2000 г. (7:33 и 7:20 GMT, соответственно). Поскольку данные представлены одним сенсором, радиометрической коррекции значений каналов снимков не проводили. Для модельной территории 6х20 км методом экспертного дешифрирования, с привлечением ранее выполненных данных полевых исследований, была проведена управляемая классификация с выделением доминирующих групп растительных сообществ.

Интегрирующая роль температурного показателя (температура земной поверхности), как индикатора ландшафтных условий, обусловила подготовку тематических карт распределения температуры на поверхности. Перевод яркостных характеристик шестого канала (10.4-12.5 мкм) в значения абсолютных температур поверхности (°С) выполнено в соответствии с общепринятой методикой [3]. Значения температуры поверхности связаны с одной стороны с экзогенными причинами - поступлением и перераспределением солнечной радиации на земной поверхности (приуроченность растительных сообществ к элементам рельефа, экспозицией склонов и т.д.). С другой - со структурными особенностями растительных сообществ (толщина мохового слоя, проективное покрытие отдельных ярусов и запас фитомассы), почвенными условиями (толщиной органогенных горизонтов, механическим составом почв, особенностями залегания мерзлых пород и толщиной сезонно-талого слоя), водным режимом (обводненность территории, степень дренирования) и др.

Приблизительную оценку распределения запасов фитомассы в сообществах проводили на основании расчета и сравнения значений нормализованного вегетационного индекса (NDVI):

$$NDVI = \frac{NIR - RED}{NIR + RED} \tag{1}$$

 Γ де NIR — значение отражения в ближней инфракрасной области спектра, RED - отражение в красной области спектра.

Орографическая и гидрографическая сеть территории, оценка уклона склоновых поверхностей представлена на основании обработки цифровой модели местности (*Digital Elevation Model*, *DEM*), составленной по топографическим материалам.

В качестве дополнительного источника данных, используемого при выделении участков еловых редколесий, опробовались данные ERS-2, представленные Европейским космическим агентством в рамках программы Category-1 (Scientific) (ID 3845).

Результаты

При проведении управляемой классификации значения сигнатур ельников достаточно сходны с отдельными пикселами изображения сообществ прибрежно-водной растительности озер (моновидовые осоковые сообщества и ивняки осоковые) и ивняков травяных. Общая площадь фрагментов лесных массивов для модельного участка территории составила порядка 206.5 га (рис. 1). Пространственный анализ показал, что массивы ельников связаны в расположении пре-имущественно с пологими (4-8°) склонами как южной так и северной экспозиции, а также пойменными участками.

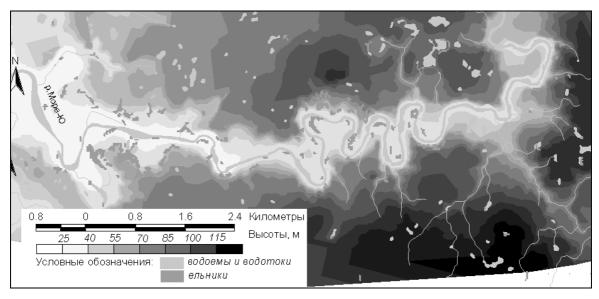


Рис.1. Распределение островных и пойменных ельников на территории по ДДЗ Landsat ETM+ (2000 г.)

Абсолютные значения температуры земной поверхности (T, °C) для 1.06 и 21.07 2000 г. определялись сезоном съемки. Наибольшие значения для периода наблюдений приурочены к дренированным участкам на положительных формах рельефа.

В качестве характерной черты участков с островными ельниками выделенао смещение температурного оптимума в более «теплую» область (для ельников интервал 13-19 °C), чем для большинства других сообществ в начале вегетационного периода (общий интервал для всех классов растительных сообществ 5-22 °C). В меньшей степени данная специфичность отмечена для середины вегетационного периода (18-22 и 16-26 °C, соответственно) (рис.2).

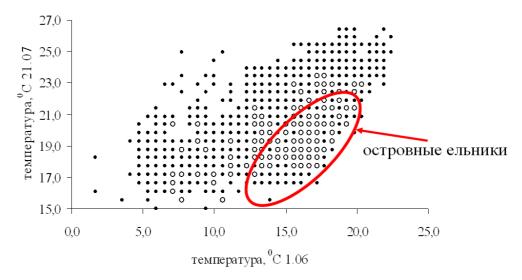


Рис. 2. Особенности температурного режима островных ельников

Соотношение различных групп растений определяет суммарные спектральные свойства растительных сообществ. Значения индекса, рассчитанные для отдельных видов на основании данных, полученных с использованием переносного портативного спектрорадиометра ASD Field Spec HH (США) демонстрирует снижение значений NDVI в ряду: сосудистые растения \rightarrow мхи \rightarrow лишайники (табл. 1).

•	•		
Объекты:	NIR	RED	NDVI
Picea obovata (хвоя)	0.59	0.10	0.71
Vaccinium uliginosum (листья)	0.71	0.17	0.61
Flavocetraria nivalis (талломы)	0.22	0.09	0.41
Cetraria islandica (талломы)	0.27	0.19	0.18
Cetrariella dilelixi (талломы)	0.16	0.07	0.37

Таблица 1. Расчет индекса NDVI отдельных растений (июль 2004 г)

Анализ значений индекса NDVI по снимкам Landsat (разрешение 30x30 м) позволил установить основные особенности накопления фитомассы в сообществах в течение вегетационного периода 2000 г. Наименьшие значения отмечены на снимках, приуроченных к началу вегетационного периода (показатель варьировал от -0.45 до 0.09), наибольшие для периода съемки 21.07 (от -0.28 до 0.4). Для всех растительных сообществ района отмечена линейная зависимость увеличения значения индекса в течение периода наблюдений (у = 0.48x - 0.28; r =0.64), что связано с развитием зеленой фитомассы травянистых растений и кустарников.

Значения индекса для выделенного класса ельников отличались меньшей изменчивостью (1.06 в пределах от -0.17 до 0.33 и 21.07 от 0.01 до 0.49), что обусловлено постоянным наличием запаса зеленой массы в хвое *Picea obovata*. Данные особенности отмечены и для группы лишайниковых тундр, значения индекса для которых имели низкие показатели в течение всего вегетационного периода.

Данные особенности были использованы для более детального выделения сообществ островных ельников по ДДЗ. Так, общий класс выделенных ельников может быть дополнительно разделен на две группы (**puc.3**): класс 1 (от -0.06 до -0.01 для 1.06 и 0.33 до 0.45 для 21.07) и класс 2 (от -0.17 до -0.04 для 1.06 и 0.48 до 0.51 для 21.07). Разделение групп зависит от вклада кустарников в общее проективное покрытие сообществ.

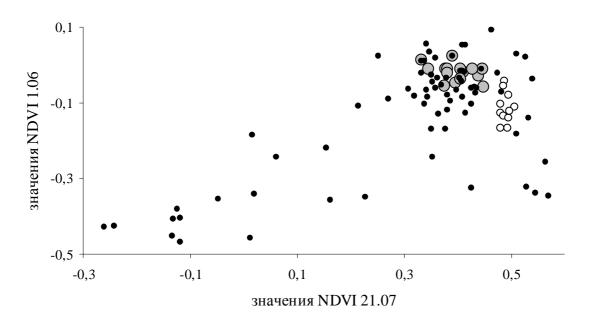


Рис. 3. Распределение отдельных растительных сообществ в шкалах значений индекса NDVI. Условные обозначения:

О ельники (класс 1) О ельники (класс 2) ● другие сообщества

Оценка количественных изменений величины УЭПР, по радарным данным (ERS-2), связанная с сезонной изменчивостью растительных сообществ, была выполнена при анализе изображений, полученных в интервале наиболее близких условиях съемки (угол съемки, атмосферные условия, влажность субстратов). Для островных ельников максимальные значения показателя были сопоставимы с сообществами ивняков-травяных (-6.7 и -7.2 дВ, соответственно), что связано с доминированием в кустарниковом ярусе обоих сообществ видов ив. Однако сезонный ход значений величины для островных ельников варьировал в интервале меньших значений (интервал изменений для данных сообществ составил 4.5 and 2.1 дВ) (рис.4), в сравнении с ивняками травяными, что может быть использовано в качестве дополнительного критерия при проведении классификации растительного покрова.

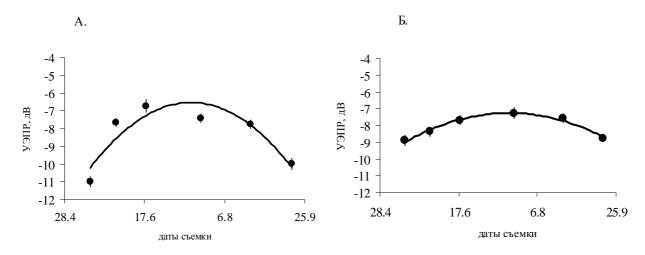


Рис. 4. Динамика величины УЭПР для групп сообществ: ивняков-травяных и островных ельников. Представлены средние значения и размах ошибки средней

Таким образом, полученные результаты демонстрируют широкие возможности привлечения технологий спутникового мониторинга применительно оценки как пространственных, так и временных характеристик компонентов естественных фитоценозов. Тестирование отдельных алгоритмов разделения классов фитоценозов показало, что применительно классификации единиц растительного покрова могут выступать как прямые характеристики (спектральные яркости каналов) так и производные (рассчитанные коэффициенты и амплитуда их варьирования).

Работа выполнена при поддержке Фонда содействия отечественной науке.

Литература

- 1. *Русанова Г.В.*. Денева С.В. Почвы реликтовых островков ели на северо-западе Большеземельской тундры // Лесоведение. 2006. №2. С.21-25.
- 2. *Лавриненко О.В.*. *Лавриненко И.А*. Островные ельники восточно-европейских тундр // Ботанический журнал. 2003. Т. 88. № 8. С. 59-77.
- 3. *Chander G.*. *Markham B.* Revised Landsat-5 TM radiometric calibration procedures and postcalibration dynamic ranges // IEEE transactions on geoscience and remote sensing. Vol. 41. No. 11. 2003. Pp. 2674-2677.