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Исследуется проявление масштабной инвариантности рельефа в  уравнениях, описывающих 
его гидрологические характеристики. Масштабно инвариантное уравнение сохраняется при 
изменении всех расстояний и промежутков времени в одинаковое число раз. Мы эксперимен­
тально нашли соотношения характеристик рельефа, которые обобщают такие фундаменталь­
ные зависимости, как закон Хака, ряд отношений Хортона и матрица Токунага. Эти соотно­
шения оказались масштабно инвариантными. Более того, если предположить, что зависимо­
сти, связывающие число, длину водотоков и площадь их водосбора, масштабно инвариантны, 
то можно формально найти эти соотношения с точностью до множителя. Множители опре­
деляем экспериментально, ориентируясь на тот диапазон масштабов, при котором получа­
ется формула, близкая к  найденной формально. Таким образом, эти зависимости вытекают 
из принципа масштабной инвариантности рельефа. Опираясь на этот принцип, можно попы­
таться до эмпирической проверки найти и другие закономерности для характеристик рельефа. 
При ином, геометрическом способе анализа рельефа получаются характеристики с  близ­
кими значениями и  также с  масштабно инвариантными соотношениями. Не  все зависимо­
сти характеристик рельефа масштабно инвариантны. Так, ориентационные характеристики 
имеют привязку к определённому масштабу.
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Введение

В  1982 г. Б.  Мандельброт (англ. Benoit B.  Mandelbrot) писал: «…мой „принцип“, провозгла­
шающий масштабную инвариантность рельефа, выдержал всесторонние испытания…» (Ман­
дельброт, 2002). Однако и  сегодня масштабная инвариантность рельефа продолжает оста­
ваться более или менее признанным эмпирическим фактом, хотя надёжно установленными 
считаются такие эмпирические зависимости, как отношения Хортона, закон Хака, коэффи­
циент Токунага. Сделаем предположение, что масштабную инвариантность (МИ) нужно счи­
тать не одним из эмпирических фактов, а, как утверждал Мандельброт, физическим принци­
пом, который обуславливает появление других зависимостей. Это поможет:

•	 понять, откуда появились закономерности, найденные эмпирически, что их порож­
дает;

•	 аналитически определить показатели степени в зависимостях точнее, чем это происхо­
дит в экспериментах;

•	 точнее искать в экспериментах значения множителей в зависимостях;
•	 предположить структуру новых зависимостей до их экспериментальной проверки.

Часто о  МИ рельефа говорят наряду с  его самоподобием и  фрактальностью (Захаров 
и др., 2019). Это близкие, но не идентичные свойства. Нас будет интересовать именно МИ, 
для которой существует строгое определение. При этом будем говорить не  о МИ рельефа, 
которую не  ясно, как формально характеризовать, а  о МИ физических закономерностей, 
описывающих рельеф. Такой МИ может не быть, когда есть самоподобие или фрактальность, 
это зависит от соотношения формальных определений.
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Определение. Масштабная инвариантность (скейлинг)  — свойство неизменности урав­
нений, описывающих некоторую физическую теорию или какой-либо физический процесс, 
при изменении всех расстояний и промежутков времени в одинаковое число раз (Физическая 
энциклопедия, 1992).

Таким образом, МИ  — это формально определённое свойство физических уравнений. 
Но нужно полагать, что это свойство возникает не  случайно, а  отражает реальные особен­
ности описываемых объектов, явлений природы. Учитывая многократно отмеченное свой­
ство самоподобия рельефа, можно ожидать МИ в  формулах, описывающих характеристики 
рельефа. Вполне возможно, не  всем уравнениям, связывающим характеристики рельефа, 
свойственна МИ.

Для того чтобы можно было оценить МИ известных эмпирических зависимостей 
гидрологических характеристик рельефа (отношения Хортона, закон Хака, коэффициент 
Токунага), необходимо в этих зависимостях перейти от описания масштаба номером порядка 
впадения водотока (система Хортона – Стралера) к геометрическим масштабным параметрам. 
Закон Хака не  использует порядки. Для отношений Хортона такой переход начался давно. 
В обзоре (Pelletier, 1999) показано, как в этих соотношениях опираться на среднюю площадь 
водосбора водотоков порядка (сохранить достаточно только один коэффициент Хортона, 
который характеризует систему порядков, например коэффициент изменения площади водо­
сбора). Мы завершили этот переход и  в качестве масштабного фактора используем длину 
водотока от истока (Златопольский, 2025б). После такого перехода МИ уравнений становится 
практически очевидной (они однородные степенные).

Экспериментально МИ закономерностей, которые мы исследовали по  линиям стока, 
построенным по цифровой модели рельефа (ЦМР), проявляется в том, что получаемые соот­
ношения практически не зависят от разрешения ЦМР. В этой статье мы рассмотрим не экс­
периментальные соотношения по дискретным данным (в пикселях), а формулы с непрерыв­
ными переменными (в метрических единицах). Покажем, что МИ не  только присутствует 
в  ряде формул, но, возможно, и  порождает эти статистические закономерности характе­
ристик рельефа. Коротко рассмотрим и  другой способ анализа рельефа, без моделирования 
стока, сопоставим его результаты с анализом линий стока.

Методика. Дискретность и непрерывность. Ограничения

Закономерности, которые мы обсуждаем, статистические и выполняются в среднем на доста­
точно большой выборке. Исследования проводим на ЦМР размером около 108 пикселей и ана­
лизируем не самые крупные элементы рельефа, а те, которых статистически достаточно много.

Опираемся на базовые гидрологические измерения, которые по  ЦМР даёт обычно 
используемая модель стока  D8 (описана, например, в  публикации (Чернова и  др., 2010)). 
Анализируем территории, на которых моделирование работает  — рельеф флювиальный 
и выраженный. После начальных расчётов модели для каждого пикселя (точки растра) выда­
ются следующие данные: в какую соседнюю точку идёт весь сток из данной точки, площадь 
водосбора  A в  точке и  самая большая длина  L от  истока до  этой точки среди линии стока, 
проходящих через эту точку.

Детальное описание измерений и  вычислений дано в  работе (Златопольский, 2025б), 
а  здесь приводим только необходимое общее описание методики получения результиру­
ющих формул. Масштаб точки линии стока определяем по  длине стока  L. На территории 
площадью S находим число точек с определённой длиной стока Q(L) и суммарную площадь 
водосбора этих точек B(L). Из этих измерений рассчитываем: какую часть территории зани­
мает суммарный водосбор точек этого масштаба G(L) = B(L)/S, среднюю площадь водо­
сбора для точек этого масштаба A(L) = B(L)/Q(L) и  число таких точек на единицу площади 
H(L) = Q(L)/S.

На этом первом шаге анализа статистические зависимости характеристик от  масштаба 
(длины линии стока) имеют вид табличных функций. Значения длин и  площадей дискрет­



184� Современные проблемы ДЗЗ из космоса, 22(6), 2025

А. А. Златопольский  Масштабная инвариантность уравнений характеристик рельефа

ные, в  пикселях. Экспериментальные функции, рассчитанные для разных территорий, 
близки. Масштабная инвариантность этих функций проявляется в  том, что функции мало 
меняются и  при существенном изменении разрешения (меняются даже меньше, чем при 
изменении территории). На следующем шаге просуммированные (для увеличения стати­
стики) табличные функции разных территорий аппроксимируем и  таким образом перехо­
дим к  непрерывным аналитическим выражениям. Затем от  значений в  пикселях переходим 
к функциям в метрических единицах, что благодаря МИ не требует пересчёта. В следующем 
разделе покажем, как МИ помогает уточнить зависимости, найденные экспериментально.

Аккуратность цепочки переходов от одного вида функций к другому подтверждается тем, 
что результирующие непрерывные зависимости стыкуются с соотношениями, которые были 
обнаружены ранее другими исследователями совсем иным путём, в  частности, по  картам. 
Иллюстрируем это в следующем разделе.

Важно учитывать, что как диапазон масштабов, в  котором справедливы обсуждаемые 
закономерности, так и диапазон, в котором действует МИ, ограничены. При описании МИ 
в физике указывают, что существуют уравнения, которые обладают МИ для любых расстоя­
ний и промежутков времени (уравнения Максвелла), а есть такие, где МИ ограничена неко­
торой пространственно-временной областью (уравнение Дирака). Ещё больше ограничений 
при работе с  рельефом, где существуют естественные ограничения на размер исследуемой 
территории, на детальность анализа (не перейти от  элементов рельефа к  растительным или 
техногенным объектам). Кроме того, поскольку обсуждаемые законы статистические, можем 
рассматривать только свойства достаточно многочисленных объектов не самого большого раз­
мера. И наконец, при анализе ЦМР для самых коротких линий стока возникают ограничения, 
связанные с  дискретностью модели и  измерений (описано в  работе (Златопольский, 2025б)). 
Так что рассматриваем предложенные ниже формулы как экспериментально опробованные 
в диапазоне 0,25 < L < 50 км, хотя, скорее всего, они работают и для L, которые в разы больше.

Вывод масштабных соотношений характеристик  
рельефа из масштабной инвариантности

В этой статье зависимости характеристик рельефа будем рассматривать с точки зрения нали­
чия в них МИ. Масштабно инвариантное уравнение не меняется при проективном преобра­
зовании (ПП), в  котором все расстояния и  промежутки времени изменяются в  одинаковое 
число раз k, т. е. x → kx, y → ky, z → kz, t → kt. Безразмерные величины при таком преобразова­
нии не меняются, а остальные физические величины изменяются в соответствии со своими 
размерностями, например, нам понадобятся: длина, которая меняется L → kL (км), площадь 
S → k2S (км2), удельное число объектов H → k–2H (км–2) и плотность D → k–1D (км/км2).

Непосредственно из этого определения следует: если функция y = f (x) обладает МИ 
и члены уравнения кроме x, y безразмерные, то это функция y = cx d, где c и d — параметры, 
d определяется соотношением размерности величин x и y. (Вывод этого утверждения. Пусть 
в  уравнении y = f (x) пространственно-временная размерность есть у  x и  y, и  только у  них. 
При ПП x → kpx и  y → kqy, где p ≠ 0 и q ≠ 0 определяются размерностью x и  y. Раз действует 
МИ, то f (k px) = k qy = k qf (x). При x = 1 имеем f (k p) = k qf (1). Если обозначить z = k p, c = f (1) 
и d = q/p, то f (z) = cz d.)

Таким образом, для зависимости A от  L (при ПП L → kL и  A → k2A) масштабно инвари­
антным будет уравнение A = aL2, где a — постоянный множитель. Это очень близко к закону 
Хака, и именно такое соотношение мы получили экспериментально (Златопольский, 2025б). 
Обратим внимание, что это равенство не  просто обладает МИ, но оно прямо следует из 
предположения о  наличии свойства МИ у  соотношения этих характеристик рельефа. Это 
уравнение развивает закон Хака, так как распространяется на точки водотоков не  только 
в устье. Оно уточняет опубликованные варианты этого закона: в законе Хака L = uA d, где u — 
множитель, d должно быть равно 0,5, а не чему-то из интервала 0,493–0,526, как в обзоре (Li 
et al., 2009), или 0,575–0,75, как в работе (Соболь, Красильников, 2018).
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Аналогично, из наличия МИ получаем H = vL–2 (при ПП L → kL и H → k–2H), v — посто­
янный множитель. А значит H(L)A(L) = G = const и H(L) = G/A(L). Так что когда в отноше­
ниях Хортона указывают зависимость H ∝ A d, то d должно быть равно –1, а  не чему-то из 
интервала от –0,95 до –0,99 (Pelletier, 1999).

Итак, из предположения о наличии МИ мы получили уравнения A = aL2, H = vL–2, а зна­
чит и  B/S = G, где G = va (т. е. и  B не  зависит от  L, а  только от  S). Это, как мы показывали 
в работе (Златопольский, 2025б), основополагающие уравнения, из которых выводятся дру­
гие. Исходя из МИ, мы получили не только общий вид этих уравнений, но и точные значения 
степени. Так что экспериментально достаточно найти два из трёх постоянных значений  — 
v, a, G. Точнее всего определить G, так как не требуется аппроксимация, а только поиск сред­
него значения. Для определения v достаточно табличной функции частоты длин, для опре­
деления a нужны также и измерения площади водосбора, хотя a интуитивно более понятный 
параметр: отношение средней ширины и длины области водосбора. Когда зависимость обла­
дает МИ, т. е. не меняется при изменении масштаба L, можно точнее определять множитель 
с  помощью аппроксимации: нужно выбрать тот диапазон значений L, который даёт функ­
цию с показателем, наиболее близким к показателю, найденному аналитически. Именно так 
искали значение v. Наши измерения по четырём территориям дали G = 0,3, v = 1,4 и из них 
a = 0,214 (Златопольский, 2025б).

Из H(L) выведем уравнения для других характеристик. Эти уравнения, как легко увидеть 
по размерностям, масштабно инвариантны.

Если рассматривать линии стока всё большей длины, то их удельное число уменьшается 
за счёт впадения. Отсюда удельное число линий стока с  определённой длиной при впаде­
нии IN(L) = –H ′(L) = 2v/L3 (размерность IN — штук за 1 км роста L на 1 км2 площади). При 
экспериментальной проверке на территории Дальнего Востока (47,15–53,5° с. ш., 130,66–
140,11° в. д., площадь суши 1,19·108 пикселей, разрешение 0,065 км/пиксель) подобрали уча­
сток экспериментальной табличной функции 15 ≤ L ≤ 160 пикселей, на котором при аппрок­
симации показатель степени наиболее близок к 3, а именно IN = 3,1/L2,997.

Другая характеристика Dall(L)  — это плотность всех участков линий стока с  длиной 

больше L, ( ) ( ) d
L

Dall L H L L v L
¥

= =ò . Из этого соотношения можно найти плотность участ­

ков линий стока с длиной от Ls до Lf : D(Ls, Lf) = Dall(Ls) – Dall(Lf ) = v(1/Ls – 1/Lf ).
В  статье (Златопольский, 2025а) предложена формула для удельного числа впадений 

линий стока длины L1 в линии стока длины L2 (аналог матрицы Токунага). Эта зависимость 
обладает МИ, так как её табличная функция не  менялась при изменении разрешения в  два 
раза. Эмпирически из формулы для удельного числа линий стока была сконструирована 
формула, хорошо совпадающая с табличной функцией, I(L1, L2) = bH(L1)H(L2), где b — без­
размерный множитель. Формула создавалась и  проверялась для дискретных измерений 
в  пикселях (матрица впадений), когда частота впадений эквивалентна их удельному числу. 
В  силу МИ формула действует и  для метрических единиц измерения: I(L1, L2) = bv2/(L1L2)2. 
Поскольку I — это число впадений за 1 км роста L1 и за 1 км роста L2, отнесённое к 1 км2 пло­
щади, его размерность км–4. И это уравнение, как видим, масштабно инвариантно.

Интегрируя I(L1, L2) по L2, получаем приведённую выше характеристику IN:
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Отсюда следует, что bv2 = 2v. А значит МИ-соотношения помогли найти значение b = 1,4.
Таким образом, МИ определяет формулу не  только исходной пары зависимостей, но 

и  многочисленных следствий, описывающих плотность водотоков, их впадения, вплоть 
до  аналогов матрицы Токунага и  аналогов отношений Хортона для порядков (подробности 
в работе (Златопольский, 2025а)).
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Не все характеристики рельефа масштабно инварианты. Далее нам понадобится средняя 
ориентация элементов рельефа, которая существенно зависит от масштаба рассматриваемых 
элементов.

Геометрический анализ рельефа

Коротко рассмотрим иной, геометрический способ анализа рельефа с помощью программы 
LESSA (англ. Lineament Extraction and Stripe Statistical Analysis), которая по  ЦМР ищет 
не водотоки, а оси долин (линейные отрицательные формы рельефа) (Златопольский, 2020). 
Локальной шириной долины (или просто шириной долины) будем здесь называть расстояние 
между осями водоразделов, ограничивающих долину. Программа LESSA выявляет долины 
с шириной W около 10 пикселей. Если перейти на другой масштабный уровень анализа, сжав 
ЦМР, то линии самых узких долин исчезнут. Последовательность таких результатов анало­
гична анализу схемы гидросети, в  которой шаг за шагом удаляются водотоки самого млад­
шего масштабного уровня.

Принципиальное отличие этого подхода в следующем. Линии долин строятся по локаль­
ным геометрическим формам рельефа, без моделирования стока. Рельеф должен быть доста­
точно выраженный (на ровных местах проявляется «цифровой шум»), но не  обязательно 
флювиальный. Не  влияют ложные понижения. Каждая точка линии долины фиксируется 
самостоятельно, могут быть пропуски в  геометрически сложных местах (например, устье), 
так что эти линии не составляют связную сеть.

Анализируется круглая окрестность диаметром в 10 пикселей. Чем ближе ширина долины 
к  10, тем больше шансов, что она будет обнаружена: при ширине 7–14 эти шансы высоки; 
при ширине 5–6 шансы есть, если чётко выражена форма; при ширине 15 и больше долина 
выявится, если в  этой окрестности нет ещё и  долин с  шириной около 10. Таким образом, 
выявляются долины в большом диапазоне масштабов, этот диапазон в 2–3 раза больше, чем 
у водотоков одного порядка.

В первую очередь, для нас важно, что и при таком способе анализа рельефа было чётко 
зафиксировано проявление МИ (Златопольский, 2015). Частота пикселей долин (отноше­
ние их числа к числу всех пикселей территории) меняется в очень небольших пределах вокруг 
значения 0,1: при изменении территории она могла отклониться на 10 % со среднеквадра­
тичным отклонением в 5 %; а при изменении разрешения в 2–45 раз — на 15 % со среднеква­
дратичным отклонением 5 %, при том что число пикселей долин могло меняться в 2000 раз. 
(Линии хребтов ищутся в LESSA аналогично линиям долин и частота точек хребтов примерно 
такая же, как у долин.)

Локально, в  небольших областях территории (круглые окна площадью 1,6 % террито­
рии) эта частота может меняться в  1,5–2,8 раз (во столько раз отличаются границы диапа­
зона, включающего 90 % значений частоты в окнах). Но внутри окна при смене разрешения 
в 4 раза частота изменялась мало: в одном эксперименте разброс по всем окнам территории 
около 10 %, а во втором — 6,5 %. Ещё одно подтверждение МИ.

Второй важный результат даёт сопоставление линий долин и  линий стока одного мас­
штаба. В первую очередь необходимо было найти соответствующие масштабы для столь раз­
ных алгоритмов построения линий. В работах (Златопольский, 2024; Златопольский, Зайцев, 
2021) для этого использовали как попиксельное сопоставление линий долин и линий стока, 
так и  сопоставление их ориентационных характеристик. С  помощью LESSA рассчитывали 
ориентационные характеристики рельефа по  линиям долин или линиям водотоков. Эта 
характеристика не  инвариантна к  изменению масштаба анализа. Так глобальная роза-диа­
грамма (по всем линиям территории) сохраняется при переходе от  линий долин к  линиям 
стока соответствующего масштаба, но существенно меняется и при смене территории и при 
смене масштаба анализа. Ещё сильнее различаются ориентационные характеристики раз­
ных территорий и/или разных масштабов при их локальном измерении (в указанных выше 
окнах). При поиске соответствия масштаба долин и линий стока мы опирались на явные осо­
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бенности ориентации рельефа при том или ином масштабе. Если найденное там приблизи­
тельное соотношение пересчитать для масштаба, заданного длиной линий стока, и  перейти 
к  целому показателю степени, то получим L = 1,76W. Это соотношение длины и  ширины 
масштабно инвариантно, так как при ПП обе величины меняются одинаково.

При одинаковом масштабе анализа удельное число точек долин и точек линий стока — 
близкие величины. Поскольку долины выявляются в  широком масштабном диапазоне, то 
смотрим линии стока тоже в  широком диапазоне. В  расчёте по  упомянутой выше террито­
рии Дальнего Востока точек долин (W = 10) оказалось 10 300 199, а число точек линий стока 
с L ≥ 17 пикселей 10 402 349 (частота 0,0874). В силу масштабной инвариантности найденного 
выше уравнения Dall = 1,4/L используем его при измерении в  пикселях и  при L = 17 полу­
чаем близкое значение 0,0824.

Приведённые результаты демонстрируют проявление МИ и  схожие зависимости при 
непосредственном анализе геометрии рельефа без использования моделирования стока.

Заключение

Вслед за Мандельбротом рассматриваем масштабную инвариантность рельефа как физиче­
ский принцип, определяющий ряд зависимостей характеристик рельефа. Предположим, что 
уравнение статистической взаимосвязи длины водотока L и площади его водосбора A обла­
дает МИ в  строгом математическом смысле. Тогда, как показано, эта зависимость должна 
описываться уравнением A = aL2, где a — постоянный множитель. Эта формула подтвержда­
ется экспериментально (законом Хака и нашими измерениями), а значит, верно предположе­
ние, что рассмотренная взаимосвязь масштабно инвариантна.

Статистические закономерности выполняются в  среднем, т. е. при конкретных измере­
ниях соотношения получаются не  точно одинаковыми, но близкими к  некоторой формуле. 
Экспериментальная оценка параметров статистической закономерности ограничена объёмом 
и  точностью данных, точностью измерительных алгоритмов. От  этого свободен аналитиче­
ский вывод формулы, который даёт точное значение показателя степени как для закона Хака.

Аналогичным образом мы получили подтверждение строгой МИ взаимосвязи для ряда 
характеристик рельефа (не все характеристики рельефа масштабно инвариантны) и  одно­
временно более точный вид известных эмпирических закономерностей, включая отношения 
Хортона и матрицу Токунага. Следствия из уравнений, найденных непосредственно из нали­
чия МИ, дали новые масштабно инвариантные уравнения, описывающие плотность водото­
ков и закономерности их впадения.

Масштабная инвариантность определяет вид уравнения и  показатель степени. Остаётся 
найти множитель. Некоторые множители связаны между собой, так что одни можно вывести 
из других (иногда не очевидным путём, как в случае с b). Остальные множители получаем из 
экспериментальных измерений. При этом МИ подсказывает какой масштабный интервал для 
этого использовать: тот диапазон значений L, который даёт функцию с показателем наиболее 
близким к найденному формально. Вполне возможно, что приведённые значения множите­
лей будут уточняться. Но и эти, похоже, не случайны, так как v2 близко к 2, a–1 близко к коэф­
фициенту Хортона для средней площади водосбора порядка 4,6 (4,63 очень близко к 100).

Как мы показали, характеристики рельефа, найденные путём геометрического анализа, 
также обладают МИ и их значения близки к соответствующим характеристикам, найденным 
с помощью моделирования стока. Таким образом, МИ соотношений не обусловлена алгорит­
мом моделирования стока.

Заметим, что найденные соотношения ожидаемы, исходя из здравого смысла: у объектов 
одного происхождения площадь пропорциональна квадрату длины; чем больше объекты, тем 
меньше их приходится на единицу площади.

Масштабную инвариантность возможно представить и как сохранение некоторых вели­
чин при изменении масштаба:
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•	 отношение суммарной площади водосбора водотоков одной длины к общей площади 
территории;

•	 отношение средней площади водосбора водотоков одной длины к  квадрату этой 
длины.

Опираясь на принцип МИ, можно попытаться найти таким не  эмпирическим путём 
и иные уравнения для характеристик рельефа.

Работа выполнена при поддержке Министерства науки и высшего образования Россий­
ской Федерации (тема «Мониторинг», госрегистрация № 122042500031-8).
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Scaling of relief characteristic equations
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The article studies the demonstration of scale invariance of relief in equations describing its hydro­
logical characteristics. Equation is scale-invariant if all distances and time intervals change by the same 
number of times. We experimentally found relationships between relief characteristics that generalize 
such fundamental dependencies as Hack’s law, several Horton’s relations and Tokunaga matrix. These 
relationships turned out to be scale-invariant. Moreover, if we assume that the dependencies that con­
nect the number, length of watercourses and the area of their catchment are scale-invariant, then we 
can formally find these relationships with an accuracy of a factor. The factors we determine experimen­
tally, focusing on the scales range that yields a formula close to the one found formally. Thus, these 
dependencies follow from the principle of scale invariance of relief. Based on this principle, we can try 
to find other patterns for relief characteristics before empirical verification. With a different, geometric 
method of relief analysis, characteristics with close values and also with scale-invariant relationships 
are obtained. Not all dependencies of relief characteristics are scale-invariant. Thus, orientation char­
acteristics are tied to a certain scale. 
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