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Настоящая работа посвящена сравнительному анализу существующих спектральных индек-
сов, полученных из спутниковых мультиспектральных изображений поверхности океана 
и  внутренних водоёмов, с  целью выявления наиболее эффективного для обнаружения пла-
вающего в океане пластикового мусора. Анализ выполнен на основе представленных в лите-
ратуре спутниковых мультиспектральных наблюдений пластикового мусора со спутника 
Sentinel-2 в  ходе контролируемых натурных экспериментов. Помимо сравнения индексов 
между собой в  задаче обнаружения пластикового мусора, рассматривается также возмож-
ность отличать пластиковый мусор от других поверхностных загрязнений, например деревян-
ных фрагментов, толстых биогенных плёнок (водоросли саргассума, фитопланктон), морской 
слизи, нефти и  пр. Для мультиспектральных изображений Sentinel-2 MSI (англ. Multispectral 
Instrument) выполнены расчёты широко используемых спектральных индексов, а  именно: 
FDI (англ. Floating Debris Index), FAI (англ. Floating Algae Index), NDVI (англ. Normalized 
Difference Vegetation Index) и PI (англ. Plastic Index). Показано, что для диагностики зон пла-
стикового мусора на поверхности воды наиболее эффективным, по  сравнению с  другими, 
представляется индекс FAI, а  не PI. Отмечено, что индекс FAI, однако, не  позволяет одно-
значно идентифицировать пластиковый мусор на фоне некоторых загрязнений, напри-
мер нефти, что требует дальнейшего развития принципов диагностики пластикового мусора 
в океане.
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Введение

Морской мусор, в  том числе пластиковый,  — это отходы антропогенной природы, которые 
попадают в морские и пресноводные экосистемы (Shevealy et al., 2012). Пластиковые отходы, 
обладая меньшей, чем у воды, плотностью, плавают на поверхности водоёмов и могут обра-
зовывать скопления, которые переносятся ветром и  океаническими течениями на большие 
расстояния, при этом часть пластиковых предметов со временем погружается вглубь воды 
(Biermann et al., 2020; Carlson et al., 2017; Möhlenkamp et al., 2018). Значительная часть пласти-
кового мусора (ПМ) скапливается в океанических вихрях, образуя большие по площади зоны 
загрязнений, такие как Большое Тихоокеанское мусорное пятно (англ. Great Pacific Garbage 
Patch — GPGP) (Chu et al., 2015; Lebreton et al., 2018).

Пластиковый мусор негативно влияет на морскую фауну, вызывая интоксикацию, уду-
шье и гибель животных (Derraik, 2002; Rochman et al., 2016). Он также способствует распро-
странению инвазивных видов, в  частности микроводорослей-обрастателей (Vodeneeva et  al., 
2024), и  выбросу токсичных химических веществ в  окружающую среду (Kwon et  al., 2015; 
Wilcox et  al., 2015). Таким образом, пластиковый мусор, поступающий из различных источ-
ников, в том числе с речным стоком в океан, оказывает весьма значительное негативное воз-
действие на морскую экосистему, поэтому мониторинг ПМ является важной экологической 
задачей.
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Контактные исследования распределения ПМ в  различных водоёмах, проводимые на 
открытой воде и  прибрежных областях, требуют значительных временных и  финансовых 
затрат, обеспечивая, однако, ограниченное покрытие и временное разрешение, поэтому осо-
бая роль в решении проблемы диагностики ПМ связана с использованием методов дистан-
ционного зондирования (Garaba et  al., 2018). Хотя использование методов дистанционного 
мониторинга ПМ находится пока на начальной стадии, в литературе описаны попытки при-
менения этих методов (Biermann et al., 2020; Goddijn-Murphy et al., 2018). Следует отметить, 
что значительное внимание уделяется развитию спутниковых мультиспектральных мето-
дов зондирования плавающего ПМ, которые включают проведение контролируемых лабо-
раторных экспериментов (Garaba, Harmel, 2022; Knaeps et  al., 2021; Moshtaghi et  al., 2021) 
и натурные наблюдения (Kremezi et al., 2021; Themistocleous et al., 2020; Topouzelis et al., 2019) 
по изучению спектральных характеристик как ПМ, так и других биогенных и антропогенных 
загрязнений водной среды (Hu, 2009; Kikaki et al., 2022; Mikeli et al., 2022). В ряде работ были 
предложены спектральные подходы и  решения на основе искусственного интеллекта для 
обнаружения плавающего мусора, а также разработаны новые методологии такого обнаруже-
ния (Basu et al., 2021; Kremezi et al., 2022; Sannigrahi et al., 2022).

Одним из наиболее активно используемых подходов к  решению проблемы обнаруже-
ния ПМ на поверхности водоёмов с помощью данных дистанционного зондирования стало 
применение различных спектральных индексов (Waqas et  al., 2023). Спектральные индексы 
позволяют идентифицировать и разделять плавающие агрегированные материалы и воду. Эти 
индексы используют спектральные значения пластиковых материалов в  видимом, ближнем 
инфракрасном и  коротковолновом инфракрасном диапазонах электромагнитного спектра 
для определения формы и  размера крупномасштабного плавающего мусора. При наличии 
целого ряда спектральных индексов возникает, однако, вопрос о выборе среди них наиболее 
информативного для задач диагностики ПМ.

Настоящая работа посвящена сравнительному анализу существующих спектральных 
индексов с  целью выявления наиболее эффективного для обнаружения плавающего в  оке-
ане ПМ. Анализ выполнен на основе представленных в  литературе спутниковых мульти-
спектральных наблюдений ПМ со спутника Sentinel-2 в ходе контролируемых натурных экс-
периментов. Помимо сравнения индексов между собой в  задаче обнаружения пластикового 
мусора, рассматривается также возможность отличать ПМ от  других поверхностных загряз-
нений, например деревянных фрагментов, толстых биогенных плёнок, морской слизи, нефти 
и  пр. Статья организована следующим образом. Вначале приводится описание спутнико-
вых экспериментов с  имитаторами ПМ, далее представляются изображения поверхностных 
загрязнений с использованием прибора MSI (англ. Multispectral Instrument), затем рассчиты-
ваются спектральные индексы для разных типов мусора и проводится их сравнение.

Данные наблюдений

В  ходе исследования, направленного на определение наиболее эффективного индекса для 
выявления пластикового мусора на поверхности водоёмов, были проанализированы мульти-
спектральные спутниковые данные Sentinel-2 MSI. В  рамках этого анализа рассматривался 
не  только ПМ, находящийся на поверхности океана, но и  другие виды загрязнений, вклю-
чая деревянные обломки, толстые биогенные плёнки (скопления саргассума/фитопланктон), 
морскую слизь, нефтяные плёнки, а также плёнки поверхностно-активного вещества — оле-
иновой кислоты (OLE), последние активно применяются для моделирования плёночных сли-
ков в океане и внутренних водоёмах (Ермаков, 2010).

Спектральные индексы для ПМ рассматривались на основе известных из литературы 
контролируемых подспутниковых экспериментов, в частности на основе натурных экспери-
ментов Plastic Litter Projects (https://plp.aegean.gr/). Контролируемые натурные эксперименты 
по данному проекту проводятся ежегодно, начиная с 2018 г., в прибрежной области острова 
Лесбос, Греция. Анализировались эксперименты 2018 и 2021 гг., когда использовались срав-
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нительно большого размера имитаторы ПМ из полиэтилена высокой плотности HDPE (англ. 
high-density polyethylene), покрывавшие площадь, превышающую пространственное разреше-
ние открытых спутниковых мультиспектральных данных Sentinel-2 (10×10 м) (Palacios, 2024; 
Papageorgiou et al., 2022; Topouzelis et al., 2019).

Также анализировались данные контролируемого подспутникового эксперимента, опи-
санного в работе (Themistocleous et al., 2020). Эксперимент проводился в прибрежной области 
г. Лимасол, Кипр, в декабре 2018 г., где в качестве имитаторов ПМ использовалось полотно 
из скреплённых пластиковых бутылок с размерами 3×10 м.

В качестве других видов загрязнений рассматривались плавающие на поверхности воды 
плёнки/маты/корки саргассума, толстые биогенные плёнки (скопление фитопланктона), 
морская слизь, деревянные обломки, плёнки OLE и  нефтяные плёнки. Маты саргассума 
регулярно наблюдаются в  Карибском море (Hernández-Nuñez, Euán-Avila, 2025; Ody et  al., 
2019). Толстые биогенные плёнки образуются в  период активного цветения фитопланктона 
(июль – сентябрь), в частности, на поверхности Балтийского моря (Лаврова и др., 2016; Konik 
et  al., 2023), а  также во внутренних водоёмах (Даниличева, Ермаков, 2023). Морская слизь 
активно распространялась в  Мраморном море в  мае – июне 2021 г. (Colkesen et  al., 2023; 
Tuzcu Kokal et  al., 2022). Деревянные обломки анализировались на основе данных экспери-
ментов Plastic Litter Projects 2021, где помимо имитаторов ПМ использовались имитаторы 
деревянных обломков. Данные наблюдений плёнок OLE в  ходе контролируемых подспут-
никовых экспериментов на Горьковском  вдхр. с  такими плёнками, проводившихся летом 
2020–2021 гг., приведены в  публикации (Даниличева, Ермаков, 2023). Нефтяные загрязне-
ния анализировались на основе наблюдений, описанных в работах (D’Ugo et al., 2025; Majidi 
Nezhad et al., 2018; Setiani, Ramdani, 2018; Vankayalapati et al., 2023).

В табл. 1 представлен список анализируемых загрязнений, период и регион наблюдений.

Таблица 1. Список анализируемых данных по наблюдению  
загрязнений на поверхности воды

Тип загрязнения Регион Дата Ссылки на литературу

Пластик и дерево Зал. Гера, о. Лесбос, Греция Июнь – сентябрь 
2021 г.

(Palacios, 2024; 
Papageorgiou et al., 2022)

Пластик Эгейское море, о. Лесбос, Греция Июнь 2018 г. (Topouzelis et al., 2019)
Пластик Старый порт Лимасола, Кипр Декабрь 2018 г. (Themistocleous et al., 2020)
Саргассум Карибское море, Гваделупа Май – июль 

2017–2023 гг.
(Ody et al., 2019)

Саргассум Карибское море, Белиз Июнь – июль 
2018–2023 гг.

(Hernández-Nuñez, Euán-
Avila, 2025)

Скопления 
фитопланктона

Балтийское море, о. Готланд, 
Швеция

Июль 2018–2022 гг.

Скопления 
фитопланктона

Горьковское вдхр., Россия Август – сентябрь 
2017–2020 гг.

Морская слизь Мраморное море, Турция Май – июнь 2021 г. (Colkesen et al., 2023; 
Tuzcu Kokal et al., 2022)

Плёнки OLE Горьковское вдхр., Россия Июнь – июль 
2020–2021 гг.

(Даниличева, Ермаков, 
2023)

Нефть Персидский зал., Кувейт Июль 2017 г. (Majidi Nezhad et al., 2018)
Нефть Макасарский пролив, Индонезия Апрель 2018 г. (Setiani, Ramdani, 2018)
Нефть Красное море, Саудовская 

Аравия
Октябрь 2019 г. (Vankayalapati et al., 2023)

Нефть Атлантический океан, о. Тобаго Февраль 2024 г. (D’Ugo et al., 2025)
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Спектральные индексы

В  обзоре (Waqas et  al., 2023) представлен ряд спектральных индексов, которые в  настоящее 
время могут быть использованы для обнаружения пластикового мусора. Нами были проана-
лизированы все приведённые индексы, но наиболее информативными оказались индексы 
FDI (англ. Floating Debris Index), FAI (англ. Floating Algae Index), NDVI (англ. Normalized 
Difference Vegetation Index) и PI (англ. Plastic Index).

Индекс плавающего мусора FDI был предложен в работе (Biermann et al., 2020) для иден-
тификации различного мусора, в том числе микропластика. Индекс плавающих на поверхно-
сти воды водорослей FAI разработан в исследовании (Hu, 2009) и нацелен на детектирование 
плотных скоплений фитопланктона на поверхности воды. Нормализованный вегетационный 
индекс NDVI, описанный в  работе (Tucker, 1979), наиболее часто используется в  сельском 
хозяйстве для оценки характеристик (плотности и «здоровья») земного растительного покрова, 
но также может применяться и  для идентификации различных типов мусора на поверхно-
сти воды. Зачастую индекс NDVI используется совместно с  индексом FDI, где последний 
отвечает за детектирование плавающего мусора, а  первый позволяет отличать растительные 
загрязнения от пластика, деревянных обломков, морской пены и пр. Индекс пластика PI спе-
циально разработан для обнаружения всех видов макропластика (Themistocleous et al., 2020).

Представленные выше индексы рассчитываются следующим образом:
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где Ri  — коэффициент отражения на длине волны λi. Для расчётов индексов используются 
следующие значения длин волн: красный диапазон Red — 665 нм, красная граница RE (англ. 
Red Edge)  — 740 нм, ближний инфракрасный диапазон NIR (англ. Near-Infrared)  — 865 нм, 
коротковолновый инфракрасный диапазон SWIR (англ. Short Wave Infrared) — 1610 нм.

Сравнительный анализ индексов и их обсуждение

Рассматриваемые индексы сравнивались для разных типов загрязнений. В табл. 2 представ-
лены примеры анализируемых изображений в  естественных цветах для различных типов 
загрязнений на поверхности воды и рассчитанные пространственные распределения индек-
сов FDI, FAI, NDVI и PI.

Из приведённых в таблице рисунков следует, что рассматриваемые индексы дают доста-
точно контрастные карты распределения загрязнений, однако для количественных выводов 
относительно эффективности того или иного индекса следует рассмотреть статистические 
оценки последних.

Эффективность индексов определяется как дисперсией значений индекса для каждого 
типа загрязнения — чем меньше дисперсия, тем надёжнее определяется тип загрязнения, так 
и  разницей между их медианными значениями, что позволяет облегчить процесс распозна-
вания различных типов загрязнений между собой. Помимо этого, поскольку представленные 
индексы используются для обнаружения загрязнений на поверхности воды, индекс загрязне-
ния должен существенно отличаться от индекса чистой воды.

На рисунке (см.  с. 279) приведены величины рассматриваемых индексов для разных 
типов загрязнений в  виде блочных диаграмм. Высота блока фактически характеризует дис-
персию значений индекса, полученных в  рассматриваемых экспериментах и  наблюдениях, 
и здесь же в блоках показаны медианные значения индексов.
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Таблица 2. Примеры изображений анализируемых загрязнений, полученных с помощью Sentinel-2 MSI

Естественные цвета FDI FAI NDVI PI

Пластиковый мусор и деревянные обломки

Саргассум

Скопления фитопланктона

Морская слизь

Плёнки OLE

Нефть
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	 а	 б

	 в	 г
Блочная диаграмма индексов FDI (а), FAI (б), NDVI (в) и PI (г) для различных типов загрязнений на 
поверхности воды (слева направо: пластик (Pl), дерево (Wood), маты саргассума (Sarg), морская слизь 
(Snot), скопления фитопланктона (Chl), плёнки олеиновой кислоты (OLE), нефть (Oil), вода (Water)), 
полученных по спутниковым мультиспектральным данным Sentinel-2 MSI. Медианные значения пока-

заны полосой внутри блока. Красные точки — неучтённые данные

Исходя из сформулированного критерия, можно заключить, что среди рассмотренных 
наиболее часто используемых индексов более эффективным для идентификации загрязнений 
на поверхности воды, в  том числе пластиковых, является индекс FAI (см. рисунок), хотя он 
изначально ориентирован на обнаружение плотных скоплений растительности на поверхно-
сти воды. Несмотря на то, что индекс FAI оказался лучше других для идентификации ПМ, 
его значения для пластика перекрываются со значениями для нефти и плёнок OLE для всех 
индексов, что может приводить к  ошибкам при диагностике ПМ. Следует также отметить, 
что индексы NDVI и  PI отличаются лишь по  абсолютным значениям и  при нормировке 
на максимальное значение индексов для скоплений фитопланктона являются абсолютно 
идентичными.

Заключение

Кратко суммируем полученные результаты:
1. Выполнен сравнительный анализ имеющихся в литературе мультиспектральных спут-

никовых изображений загрязнений разного типа на поверхности воды, включая пластико-
вый мусор, деревянные фрагменты, толстые биогенные плёнки саргассума и фитопланктона, 
морскую слизь, нефтяные плёнки, плёнки поверхностно-активного вещества.

2. Рассчитаны наиболее широко используемые при анализе мультиспектральных данных 
спектральные индексы: FDI, FAI, NDVI и PI. Показано, что в задачах обнаружения и иденти-



280� Современные проблемы ДЗЗ из космоса, 22(6), 2025

О. А. Даниличева, С. А. Ермаков  О возможностях использования спектральных индексов…

фикации загрязнений пластиком на поверхности воды большей эффективностью из перечис-
ленных индексов характеризуется индекс FAI, а не PI, как можно было бы ожидать.

3. В  то же время использование индекса FAI не  позволяет однозначно идентифициро-
вать пластиковый мусор, например, в присутствии нефтяных плёнок. Таким образом, задача 
диагностики пластикового мусора с использованием существующих спектральных индексов 
пока не  может считаться полностью решённой и  требует дальнейшего развития принципов 
такой диагностики.

Исследование выполнено при финансовой поддержке Российского научного фонда (про-
ект № 23-17-00167, https://rscf.ru/project/23-17-00167/).
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identification in satellite multispectral ocean images
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The paper presents a comparative analysis of existing spectral indices obtained from satellite multi-
spectral images of the ocean surface and inland waters in order to identify the most effective ones for 
detecting floating ocean plastic debris. The analysis is based on satellite multispectral observations of 
plastic debris from the Sentinel-2 satellite presented in the literature during controlled in  situ exper-
iments. In addition to comparing the indices with each other in the task of detecting plastic debris, 
the possibility of distinguishing plastic debris from other surface contaminants, such as wooden frag-
ments, thick biogenic films (sargassum algae, phytoplankton), marine mucilage, oil, etc., is also 
considered. For the Sentinel-2 Multispectral Instrument (MSI) multispectral images, widely used 
spectral indices were calculated, namely, Floating Debris Index (FDI), Floating Algae Index (FAI), 
Normalized Difference Vegetation Index (NDVI), and Plastic Index (PI). It is shown that, among 
the  indices, the FAI, rather than the PI, is the most effective for diagnosing plastic debris zones on 
the water surface. It is noted that the FAI, however, does not allow for unambiguous identification of 
plastic debris against the background of certain pollution, such as oil, which requires further develop-
ment of the principles of diagnosing plastic debris in the ocean.
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