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Материалы дистанционного зондирования Земли активно используются для мониторинга 
изменений растительного покрова на труднодоступных территориях, где проведение поле-
вых исследований затруднительно. Такими представляются вторично обводнённые торфя-
ники, мониторинг которых необходим для оценки качества проведённых рекультивационных 
мер. Наиболее сложными для выделения классами водно-болотной растительности являются 
залесённые и  закустаренные болота, чьи спектральные сигнатуры схожи как с  заболочен-
ными, так и сухими сообществами. В данной работе предложена методика выделения класса 
обводнённых залесённых и  закустаренных торфяных болот, основой которой стало исполь-
зование разносезонных снимков, а  также предварительной обработки спутниковых дан-
ных. Были сравнены результаты классификации с  обучением, полученные с  применением 
многовременных снимков съёмочных систем Landsat-8 и  Sentinel-2. В  работе апробированы 
два алгоритма предварительной обработки космических снимков: метод главных компонент 
(англ. principal component analysis) и преобразование Каута – Томаса (англ. tasseled cap transfor-
mation) — а также вариант использования композита из спектральных индексов NDVI (англ. 
Normalized Difference Vegetation Index) и  NDMI (англ. Normalized Difference Moisture Index) 
за разные сезоны. Было проведено сравнение трёх разных методов классификации на основе 
алгоритмов Support Vector Machine, Random Trees и K-Nearest Neighbor. Результаты оценива-
лись на основе данных наземных наблюдений. В качестве варианта, показавшего наилучшую 
точность, признано применение алгоритма классификации Support Vector Machine для сним-
ков Landsat-8 и метода главных компонент в качестве предобработки. В этом случае точность 
дешифрирования растительности объединённого класса залесённых и  закустаренных болот 
составила 95 %.
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Введение

Использование данных дистанционного зондирования для изучения болотных экосистем 
считается перспективным, но сопряжённым с  большим количеством трудностей методом. 
Его главные преимущества по  сравнению с  полевыми исследованиями заключаются в  воз-
можности осуществления ежегодного или сезонного мониторинга, бóльшая эффективность 
с  точки затрат ресурсов и  времени, а  также более простая интеграция спутниковых данных 
в геоинформационные системы (Ozesmi, Bauer, 2002). Сложности же заключаются в большом 
разнообразии дешифровочных признаков внутри болотных угодий одного или разных типов, 
а также в их возможных перекрытиях с другими категориями территорий — в первую очередь 
лесными и сельскохозяйственными землями. Эти проблемы особенно актуальны для лесных 
и  залесённых болот, имеющих крайне схожие спектральные сигнатуры с  сухими участками 
леса, выделение которых требует привлечения более сложных инструментов анализа струк-
туры изображения (Терентьева и др., 2020) или же дополнительных картографических мате-
риалов (Вомперский и др., 2021). Однако в случае высокодинамичных территорий, таких как 
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вторично обводнённые торфяники, актуальность вспомогательных данных может быть утра-
чена в короткий период времени, а полнота информации в них ограничена труднодоступно-
стью объектов изучения. Это обстоятельство обуславливает необходимость усовершенствова-
ния методики дешифрирования спутниковых данных для нужд мониторинга заболоченных 
территорий. Отдельным вызовом становится подбор таких материалов дистанционного зон-
дирования и  методов их обработки, чтобы сделать возможным выполнение классификации 
растительного покрова на основе ограниченной обучающей выборки.

Оценка сложности выделения схожих классов водно-болотных угодий по  спутнико-
вым данным видимого и инфракрасного диапазона была дана в работе (Application…, 1992). 
Наблюдается следующая закономерность: точность классификации уменьшается по  мере 
снижения степени обводнённости территории. Наиболее простыми для анализа называются 
периодически затапливаемые или полностью находящиеся в воде заросли гидрофитной рас-
тительности, за ними следуют залесённые болота; причём болота, занятые лиственными 
породами, классифицируются лучше, чем покрытые хвойными. Самым сложным классом 
для дешифрирования называются закустаренные болота. При этом важность залесённых 
и закустаренных болотных сообществ в функционировании экосистем сложно переоценить: 
они служат местообитанием для множества видов млекопитающих, птиц и насекомых; при-
нимают участие в циклах углерода и азота; регулируют поверхностный сток (Rowinski, 1995). 
С другой стороны, в случае вторичного обводнения торфяников наличие кустарниковой рас-
тительности считается скорее негативным фактором, так как таким образом увеличивается 
транспирация с поверхности (Tuittila et al., 2000). Эта особенность делает данные типы уго-
дий особенно важными в системе мониторинга рекультивированных торфяников, от степени 
увлажнённости которых зависит их потенциальная пожароопасность.

Мониторинг объектов вторичного обводнения необходим для оценки эффективности 
проведённых рекультивационных мер. Настоящая работа дополняет методику, описанную 
в публикации (Сирин и др., 2021), в которой под обводнёнными территориями учитывается 
только два класса наземного покрова  — «водная поверхность» и  «гидрофильная раститель-
ность». Предлагаемые усовершенствования позволят ввести в мониторинг также класс обвод-
нённых закустаренных и  залесённых торфяных болот, что в  последствии может использо-
ваться при расчётах эмиссии парниковых газов с объектов обводнения, а также для отслежи-
вания происходящих процессов по восстановлению растительности на них.

Объекты и методы

Объект

В качестве пробных объектов для апробации предлагаемой методики классификации расти-
тельного покрова на вторично обводнённых торфяниках были выбраны три участка, нахо-
дящиеся в  Московской области. Всего осушенные торфяники и  естественные торфяные 
болота занимают около 250 тыс. га или же 6 % площади области. В период 2010–2013 гг. более 
70 тыс. га осушенных торфяников были обводнены, после чего они стали объектом ежегод-
ного мониторинга, осуществляемого Институтом лесоведения РАН (Информационный…, 
2022).

Из 77 объектов обводнения были выбраны следующие, представленные на рис. 1 
(см. с. 339) территории: 1) территория Логинского лесничества Павлово-Посадского лесного 
хозяйства (Объект № 25; координаты центроида участка  — 55,69687° с. ш., 38,76871° в. д.); 
2) территория старых торфоразработок у  посёлка Мисцево Орехово-Зуевского городского 
округа (Объект № 27; координаты центроида — 55,626473° с. ш., 39,088893° в. д.); 3) террито-
рия лесных пожаров 2010 г. и  старых торфоразработок, посёлок Чистое Орехово-Зуевского 
городского округа (Объект № 29; координаты центроида — 55,637290° с. ш., 39,231818° в. д.).
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Рис. 1. Схема расположения тестовых объектов. Составлена авторами

Исходные данные

В  работе использовались данные съёмки, полученные аппаратурой спутниковых систем 
Sentinel-2 и  Landsat-8, находящиеся в  открытом доступе. Выбор был обусловлен не  только 
доступностью данных, но и  их пространственным разрешением, наличием в  обоих случаях 
канала в коротковолновом инфракрасном диапазоне SWIR (англ. Short-Wave InfraRed), необ-
ходимость использования которого в целях классификации растительного покрова торфяни-
ков была выявлена ранее (Медведева и др., 2019).

В  рамках апробации предлагаемой методики было решено сравнить результаты класси-
фикации снимков двух разных спутниковых систем. Помимо пространственного разреше-
ния  — 30 м для видимого и  инфракрасного диапазонов, 100 м для тепловой съёмки у  спут-
ника Landsat-8; от 10 до 60 м для видимого и инфракрасного диапазонов Sentinel-2 — источ-
ником различий может послужить наличие у  Landsat-8 каналов в  тепловом диапазоне или 
же бóльшее число каналов с более узкими полосами захвата в ближнем и коротковолновом 
инфракрасных диапазонах у Sentinel-2.

Для сравнения были взяты сцены Landsat-8 и  Sentinel-2, снятые в  одинаковые дни, что 
позволило свести к минимуму влияние на результат классификации фенологических особен-
ностей растительности и погодных условий. Выбранные снимки были засняты аппаратурой 
спутников 20.06.2021, 15.07.2021 и 22.12.2021.

Так как работа заключалась в улучшении уже существующей методики (Медведева и др., 
2011) классификации заболоченных территорий посредством дополнения набора клас-
сов категориями обводнённых залесённых и  закустаренных торфяников, особенно важно 
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понимание, какие именно каналы наиболее информативны для этих типов растительного 
покрова. Подобная оценка приводится в работе (Amani et al., 2018), где каналы разных спут-
никовых систем оцениваются с точки зрения разделения на изображениях обобщённой кате-
гории залесённых и  закустаренных болот, верховых болот и  сообществ гидрофильных рас-
тений. В  случае снимков Sentinel-2 наиболее информативными признаны каналы ближнего 
инфракрасного диапазона; в случае Landsat-8, помимо красного и ближнего инфракрасного 
каналов, важным для дифференциации закустаренных болот становится тепловой канал. 
Однако наиболее целесообразным является использование всех доступных каналов съёмоч-
ных систем, как и было сделано в настоящей работе.

Сбор наземных данных для изучения водно-болотных угодий сопряжён с рядом проблем, 
связанных в первую очередь с труднодоступностью объектов и частым отсутствием возмож-
ности осуществить GPS-привязку точки описания с  высокой точностью. Однако наличие 
достаточного для территории количества элементов в обучающей и тестовой выборке необ-
ходимо для большинства методик, описываемых в  литературе (Mahdavi et  al., 2018). Малый 
объём базы наземных описаний не только влияет на итоговую точность классификации, но 
и ограничивает возможность применения некоторых классификаторов, в том числе тех, кото-
рые на данный момент являются наиболее используемыми для схожих задач («случайный 
лес» (англ. Random Forest), Gradient Boosting, нейросетевые подходы и т. д.). Эта особенность 
алгоритмов обусловлена применением в  ходе их выполнения подвыборок, что в  условиях 
небольшого количества элементов в обучающей выборке в целом может привести к возник-
новению значительного разброса оценок при обучении модели (Fassnacht et al., 2014). 

Для составления обучающей выборки, на основе которой проводилась классификация, 
использовались полевые данные, полученные в  августе – сентябре 2021 г. Всего на три изу-
чаемых объекта была получена 121 точка полевых описаний (без описания объектов класса 
«вода») с фотоматериалом.

Методика классификации растительного покрова

Предлагаемая методика основывалась на двух дополнениях к традиционно применяемой для 
дешифрирования растительного покрова классификации с  обучением. Первая особенность 
заключается в  использовании в  качестве исходных данных многовременного снимка; под 
многовременным снимком в  данном случае подразумевается серия снимков, выполненная 
одной и той же съёмочной системой с одной орбиты. Применение многовременных данных 
для классификации растительного покрова в целом считается общепринятой и дающей наи-
лучшие результаты практикой.

Вторая особенность методики заключается в  предварительной обработке спутниковых 
снимков. В работе сравнивалось два алгоритма спектрального преобразования исходных дан-
ных: метод главных компонент (англ. Principal Component Analysis — PCA) и преобразование 
Каута – Томаса (англ. tasseled cap transformation). Помимо этого, в качестве аналога для сни-
жения размерности используемых данных было решено оценить применение в классифика-
ции композитов из спектральных индексов: нормализованного разностного вегетационного 
индекса NDVI (англ. Normalized Difference Vegetation Index) и нормализованного разностного 
индекса влажности NDMI (англ. Normalized Difference Moisture Index).

Важный фактор получения достоверного результата классификации и высокой точности 
дешифрирования  — использование подходящего алгоритма классификации. В  данном слу-
чае на выбор метода сильно повлиял небольшой объём обучающей выборки и неравномерное 
распределение классов внутри неё, что сделало невозможным корректное применение таких 
классификаторов, как, например, случайный лес. Наиболее популярными в задачах лесного 
мониторинга алгоритмами классификации, помимо линейных классификаторов, являются 
метод опорных векторов SVM (англ. Support Vector Machine), группа методов, использующих 
ближайшее соседство (в том числе метод K-ближайших соседей или KNN (англ. K-Nearest 
Neighbors)), а также вышеупомянутый случайный лес (Fassnacht et al., 2014). В рамках работы 
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было решено апробировать методы всех трёх групп: Support Vector Machine, K-Nearest 
Neighbors, а также «случайные деревья» (англ. Random Trees) как неансамблевый и подходя-
щий для рассматриваемого объёма обучающей выборки аналог случайному лесу.

Индексными изображениями называются растры, полученные в результате выполнения 
арифметических операций со значениями яркости в  спектральных зонах, выбор которых 
зависит от изучаемого природного явления (Балдина, Лабутина, 2021). Наиболее часто при-
меняются вегетационные индексы, позволяющие оценить характеристики продуктивности 
биомассы за счёт ярко выраженных спектральных различий отражения зелёной растительно-
сти в  разных участках спектра. Одним из таких индексов, наиболее часто применимым 
в работах по мониторингу растительности, является нормализованный разностный вегетаци-

онный индекс NDVI, вычисляемый по  формуле: NIR red

NIR red
NDVI  ,

B B
B B

-
=

+
 где NIRB  и  redB   — 

яркость в ближней инфракрасной и красной зонах спектра соответственно. Каналы в корот-
коволновом инфракрасном диапазоне используют индексы, оценивающие уровень влажно-
сти растительности, например нормализованный разностный индекс влажности NDMI, 

вычисляемый по формуле: NIR SWIR1

NIR SWIR1
NDMI  ,

B B
B B

-
=

+
 где SWIR1B  — яркость в коротковолновой 

инфракрасной зоне спектра. Индекс NDMI в некоторых случаях называют более информа-
тивным для целей мониторинга состояния биомассы растительности из-за более высокой 
чувствительности к  небольшим изменениям состояния древостоя, возможности детектиро-
вать водный стресс и  т. д. (Jin, Sader, 2005). Несмотря на это, часто индексы используются 
совместно, в том числе для целей многолетнего мониторинга торфяников: в работе (Crichton 
et  al., 2025) вместо исходных снимков классифицируются именно серии композитов из 
индексных изображений NDVI в  качестве индикатора фотосинтетической активности 
и  NDMI в  качестве индикатора увлажнения как растительного, так и  почвенного покрова. 
Аналогичный подход было решено применить также и в данной работе, однако помимо этого 
использовались и другие методы предобработки спутниковых снимков.

Метод главных компонент представляет собой способ преобразования многозональных 
снимков, позволяющий уменьшить размерность данных за счёт построения более информа-
тивных линейных комбинаций из исходных данных съёмочных каналов и  тем самым упро-
стить задачу классификации (Балдина, Лабутина, 2021). Перспективным использованием 
метода для дальнейшего мониторинга изменения растительности на вторично обводнённых 
торфяниках может стать также интерпретация одной из компонент (её номер зависит от доли 
(в %) территории, подвергнутой изменениям за период наблюдения), рассчитанной для мно-
говременного композита за разные годы, как ответственной за произошедшие изменения 
(Gong, Xu, 2003); различные модификации алгоритма могут также выделить пространствен-
ные и  временные паттерны изменений (Dronova et  al., 2015). Отдельным развивающимся 
направлением использования метода главных компонент в  обработке спутниковых данных 
для ландшафтных исследований представляется сопоставление компонент, имеющих наи-
большую факторную нагрузку, с  ландшафтными инвариантами динамических систем, опи-
сывающими различные характеристики территории (Байбар и  др., 2023). Отождествление 
компонент с запасами биомассы, активностью фотосинтеза и влагосодержанием, подразуме-
ваемое в данном случае, связывает этот подход с другим вариантом предобработки многозо-
нальных снимков — преобразованием Каута – Томаса.

Преобразование Каута – Томаса, также известное как «шапочка с  кисточкой» (англ. tas-
seled cap), представляет собой получение составных значений каналов в  виде их взвешен-
ных сумм. В отличие от метода главных компонент, веса для преобразования Каута – Томаса 
постоянны и  определены для различных спутниковых съёмочных систем и  целей анализа. 
Так, результирующие растры могут соответствовать яркостному фактору (brightness), фак-
тору растительности (greenness) или фактору увлажнения (wetness) (Crist, Kauth, 1986). 
Используемые в  преобразовании коэффициенты рассчитываются эмпирически на основе 
средних спектральных кривых растительности и  почвенного покрова, что обосновывает 
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прямую связь результата с  физической характеристикой земной поверхности (Crist, Cicone, 
1984). Применение преобразования Каута – Томаса можно считать аналогом расчёта спек-
тральных индексов, в  котором, однако, учитываются все доступные каналы изображения: 
фактор увлажнения коррелирует с  нормализованным разностным индексом влажности 
NDMI (Jin, Sader, 2005), а  фактор растительности  — с  нормализованным вегетационным 
индексом NDVI (Samarawickrama et al., 2017). Данный метод использовался для классифика-
ции водно-болотных угодий, в частности залесённых болот, однако оценка точности резуль-
татов применения в  литературе довольно сильно разнится: так, в  работе (Sader et  al., 1995) 
точность выделения залесённых болот по  преобразованным данным сопоставима с  приме-
нением исходных спутниковых материалов. С другой стороны, преобразованные с помощью 
этого метода изображения используются для создания национальной системы мониторинга 
водно-болотных угодий Австралии (Dunn et al., 2023). Такие результаты могут быть связаны 
с тем, что коэффициенты для преобразования подразумевают более общие типы раститель-
ности в классификации (Crist, Kauth, 1986).

В настоящей работе использовались коэффициенты преобразования Каута – Томаса, рас-
считанные для аппаратуры OLI (англ. Operational Land Imager) Landsat-8 и  представленные 
в статье (Baig et al., 2014); для данных Sentinel-2 применялись коэффициенты, определённые 
в публикации (Shi, Xu, 2019). 

В  рамках предлагаемой методики выделяется семь видов почвенно-растительного 
покрова, три из которых попадают в категорию водно-болотных угодий. Основа набора клас-
сов взята из исследования (Сирин и др., 2021) и была дополнена двумя новыми классами объ-
ектов — обводнённых залесённых и закустаренных торфяных болот.

Для всех трёх изучаемых объектов из 121 точки полевых описаний 52 точки, характеризу-
ющиеся наибольшей однородностью внутри участка, использовались для создания обучаю-
щей выборки, а остальные — для оценки точности полученной классификации.

Сухие участки обводнённых торфяников были разделены на три класса: 1) «трава»  — 
сухолюбивые травянистые сообщества, представленные луговой растительностью, с редкими 
деревьями; 2) «хвойный лес» — преимущественно сосново-еловые леса, реже участки сосня-
ков с участием берёзы или ольхи в подлеске; 3) «лиственный лес» — плотные берёзовые леса, 
иногда с вкраплением хвойных пород, с развитым травянистым ярусом. 

К классам заболоченных участков относятся: 4) «гидрофильные сообщества» — сообще-
ства с  повышенной степенью увлажнения с  преобладанием осоки, тростника и  ивы, часто 
приуроченные к  берегам водоёмов и  образующие сплавины; 5) «обводнённые залесён-
ные торфяные болота» — древесные сообщества, в первую очередь с преобладанием берёзы 
и  ольхи, с  повышенным увлажнением, на торфяных почвах; 6) «обводнённые закустарен-
ные торфяные болота» — участки болот с низкой порослью сосны и берёзы, отличающиеся 
от предыдущего класса меньшей высотой и плотностью деревьев. Дополнительно выделялся 
класс 7) «вода»  — к  нему относились все водные объекты, поверхность которых не  скрыта 
водной растительностью, с минимальной шириной, позволяющей выделить их на спутнико-
вых материалах. В исходном наборе классов также присутствовал открытый торф, однако на 
модельных объектах, согласно полевым данным, подобные участки отсутствовали.

Выбранные классы дешифрирования справедливо назвать достаточно общими и сложно 
интерпретируемыми с геоботанической точки зрения. Однако их разбиение на более мелкие, 
использующие видовые характеристики, не представляется возможным в случае дешифриро-
вания спутниковых данных со средним и высоким пространственным разрешением и неболь-
шим количеством спектральных каналов. Это связано с  тем фактом, что водно-болотные 
угодья в  большинстве случаев характеризуются резкими градиентами ландшафтообразую-
щих факторов и высокой мозаичностью — в значении яркости пикселя на снимке могут сме-
шиваться спектральные данные разных видов растений или растительных сообществ (Zomer 
et al., 2009).
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Результаты и обсуждение

Результаты классификации с  применением разных алгоритмов предобработки данных 
Landsat-8 и Sentinel-2 оценивались с помощью тестовой выборки, созданной на основе поле-
вых данных. Были построены матрицы ошибок, позволяющие оценить точность результатов. 
Результаты по всем использованным спутниковым системам, методам предобработки и алго-
ритмам классификации сведены в  табл. 1. Цветом выделены варианты сочетания алгорит-
мов, показавшие наилучшие результаты классификации.

Таблица 1. Общие точности результатов классификации по матрицам ошибок

Спутниковая 
система

Метод 
предобработки

Алгоритм 
классификации

Общая точность 
по матрице оши-
бок, 7 классов, %

Общая точность по матрице 
ошибок, 6 классов (объединён-

ный класс), %

Landsat-8 Метод главных 
компонент

SVM 90,10 94,06
Random Trees 82,18 85,15
KNN 61,39 64,36

Преобразование 
Каута – Томаса

SVM 79,21 82,18
Random Trees 75,25 77,23
KNN 64,36 67,33

Индексы 
NDVI+NDMI

SVM 68,32 72,28
Random Trees 66,34 68,32
KNN 67,33 70,30

Sentinel-2 Метод главных 
компонент

SVM 78,22 79,21
Random Trees 67,33 69,31
KNN 56,44 59,41

Преобразование 
Каута – Томаса

SVM 78,22 79,21
Random Trees 72,28 74,26
KNN 59,41 69,31

Индексы 
NDVI+NDMI

SVM 72,28 77,23
Random Trees 67,33 70,30
KNN 51,49 52,48

Как следует из табл. 1, наибольшую точность показал метод, использующий предобра-
ботку методом главных компонент на данных спутниковой системы Landsat-8 и  алгоритм 
классификации Support Vector Machine. В  данном случае проверка показала возможность 
не только корректного разделения лесов разного породного состава, но и степени заболочен-
ности. Подробная матрица ошибок для этого случая представлена в табл. 2. Вторым по точ-
ности является использование того же метода предварительной обработки, но с классифика-
цией Random Trees. Незначительно отличаются результаты применения на данных Landsat 
преобразования Каута – Томаса + SVM, а  также классификации Sentinel-2 метод главных 
компонент+SVM и преобразования Каута – Томаса + SVM.

В целом использование данных Landsat-8 показало результаты выше по сравнению с дан-
ными Sentinel-2. Особенно в лучшую сторону отличаются результаты классификации данных, 
предобработанных методом главных компонент. Это может быть связано с важностью нали-
чия теплового канала для повышения точности классификации растительности водно-болот-
ных угодий: при преобразовании Каута – Томаса данные аппаратуры TIRS (англ. Thermal 
Infrared Sensor) не учитывались, как и в случае индексных изображений, в то время как тепло-
вой канал использовался при расчёте главных компонент. Стоит отметить, что в более ранних 
работах по  данной теме (Медведева и  др., 2019; Сирин и  др., 2021) тепловой канал Landsat 
не применялся в классификации.
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Таблица 2. Результат классификации снимков Landsat-8, предобработка методом главных компонент

Классы Наземные данные Σ
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Трава 5 5 100,00
Хвойный лес 17 17 100,00
Лиственный лес 1 2 27 30 90,00
Гидрофильные сообщества 12 1 1 14 85,71
Вода 1 15 16 93,75
Обводнённые лесные торфя-
ные болота

12 4 16 75,00

Обводнённые закустаренные 
земли

3 3 100,00

Σ 6 19 27 13 16 12 8 101
Точность производителя, % 83,33 89,47 100,00 92,31 93,75 100,00 37,50 90,10

Корректное выделение класса обводнённых закустаренных торфяных болот оказалось 
затруднительным, так как большое количество объектов тестовой выборки были отнесены 
алгоритмом к  классу обводнённых лесных болот. Меньшее количество ошибок подобного 
рода даёт использование данных Sentinel-2, в  особенности предобработанных преобразо-
ванием Каута – Томаса (91,67 % точности для залесённых и  75 % для закустаренных болот), 
что, вероятно, связано в первую очередь с пространственным разрешением снимков. Однако 
результат преобразования Каута – Томаса на данных Sentinel-2 даёт результат ниже среднего 
при выделении сухих хвойных лесов, а  также проигрывает в  точности выделения другого 
класса мониторинга обводнения  — гидрофильных сообществ (69,23 % против 92,32 % при 
использовании метода главных компонент на данных Landsat).

На рис. 2 (см.  с. 345) представлено сравнение лучших результатов классификации на 
один из тестовых объектов, характеризующийся наибольшим разнообразием заболоченных 
классов. Отдельно дана схема обводнённости исследуемого участка, наблюдаемой в  период 
полевого обследования.

По совокупности причин, описанных выше, для целей дальнейшего мониторинга пред-
лагается использовать вариант классификации данных Landsat-8 с предобработкой методом 
главных компонент и  классификацией алгоритмом Support Vector Machine. В  целях умень-
шения количества ошибок омиссии, возникающих в  случае обводнённых закустаренных 
торфяных болот, рекомендуется объединить в  один классы «обводнённые залесённые тор-
фяные болота» и  «обводнённые закустаренные торфяные болота». В  таком случае точность 
выделения класса заметно повышается (табл. 1, последний столбец) и  достигает 94 % для 
выбранного метода классификации и в среднем 65–75 % для всех остальных рассмотренных 
вариантов.

Заключение

Результат настоящей работы — получение методики выделения класса обводнённых залесён-
ных и закустаренных болот на основе классификации данных спутниковой съёмки. Данный 
тип растительности сложен для дешифрирования из-за спектральных особенностей и схоже-
сти с другими классами растительного покрова, однако необходим для мониторинга объектов 
вторичного обводнения.
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Рис. 2. Результат классификации пробного объекта № 29 (посёлок  Чистое) по  композитам снимков 
за 20.06.2021, 15.07.2021, 22.12.2021 разными алгоритмами обработки. UTM (англ. Universal Transverse 

Mercator). Составлено авторами
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Было апробировано использование данных Sentinel-2 и  Landsat-8 для классификации 
растительного покрова вторично обводнённых торфяников. Полученные результаты пока-
зали, что с применением аналогичной методики снимки Landsat-8 дают более высокую точ-
ность. Данная работа подтверждает важность теплового канала съёмки в целях дешифрирова-
ния растительности заболоченных территорий, упоминаемую в литературе. Для дальнейшего 
мониторинга участков обводнения необходимо использовать все возможные каналы аппара-
туры спутниковой системы Landsat-8. В предыдущей версии методики тепловой канал не был 
применён.

В  работе апробированы два алгоритма предварительной обработки космических сним-
ков — метод главных компонент и преобразование Каута – Томаса — а также вариант исполь-
зования композита из спектральных индексов NDVI и NDMI за разные сезоны. Также было 
проведено сравнение трёх разных методов классификации, а  именно алгоритмов Support 
Vector Machine, Random Trees и K-Nearest Neighbor. Результаты оценивались на основе дан-
ных наземных наблюдений. Малый объём базы наземных описаний не позволил применить 
алгоритмы Random Forest, Gradient Boosting, нейросетевой подход, что ставит следующую 
задачу по расширению набора опорных данных.

Наилучшим способом выделения дополнительного класса обводнённых залесён-
ных и  закустаренных болот был выбран способ классификации многовременного снимка 
Landsat-8 алгоритмом Support Vector Machine, предобработанного методом главных компо-
нент. Данный способ сочетает в себе высокую точность выделения как сухих, так и заболо-
ченных классов: для сухих травянистых сообществ  — 83,3 %; сухих хвойных и  лиственных 
лесов 89,5 и 100 % соответственно; гидрофильных сообществ — 92,3 %; обводнённых залесён-
ных и  закустаренных торфяных болот  — 95 %. Для открытой водной поверхности точность 
выделения составила 93,8 %. Кроме того, пространственное разрешение снимков Landsat 
позволяет избежать зашумлённости, вызванной особенностями структуры растительного 
покрова.

Представляемая методика может быть использована в  целях мониторинга объектов 
обводнения и оценки его успешности, а также для выделения схожих классов растительности 
на участках естественных болот.

Наземные данные, используемые в  работе, получены в  рамках государственного зада-
ния Института лесоведения РАН, обработка полученного полевого материала была про-
ведена при поддержке важнейшего инновационного проекта государственного значения 
«Разработка системы наземного и  дистанционного мониторинга пулов углерода и  потоков 
парниковых газов на территории Российской Федерации, обеспечение создания системы 
учёта данных о потоках климатически активных веществ и бюджете углерода в лесах и других 
наземных экологических системах» (рег. № 123030300031-6), разработка методики выполнена 
при участии Российского научного фонда (проект 23-74-00067).
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Monitoring of flooded vegetation of  rewetted peatlands 
 based on remote sensing data
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Remote sensing data is actively used for vegetation dynamics monitoring in hard-to-reach areas where 
field research is difficult. These are rewetted peatlands monitoring of which is necessary to assess 
the  quality of rewetting measures. The most difficult classes of wetland vegetation to distinguish are 
forested and scrub-shrub wetlands whose spectral signatures are similar to both wet and dry commu-
nities. In this paper, a method is proposed for identifying a class of flooded forested and shrub peat-
lands based on the use of multi-season images, as well as pre-processing of satellite data. The clas-
sification results were compared with the training ones obtained using multi-temporal images from 
the Landsat-8 and Sentinel-2 satellites. Two algorithms for preprocessing satellite images were tested: 
the principal component analysis method and the tasseled cap transformation, as well as the option 
of using a composite of multi-seasonal NDVI (Normalized Difference Vegetation Index) and NDMI 
(Normalized Difference Moisture Index) spectral indices. Three different classification methods, 
namely Support Vector Machine, Random Trees and K-Nearest Neighbor, were also compared. 
The results were evaluated on the basis of ground-truth data. The use of the Support Vector Machine 
classification algorithm for Landsat-8 images and the principal component method for preprocessing 
was recognized as the option that showed the best accuracy. In this case, the accuracy of decoding veg-
etation of the combined class of forested and shrub peatlands was 95 %.

Keywords: remote sensing, rewetted peatlands, Landsat-8, Sentinel-2, vegetation monitoring, multi-
spectral images, peat bogs, peatlands, peat mining, rewetting, flooded vegetation
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