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В дрейфующем ледяном покрове арктических морей под действием динамических факторов 
образуются разрывы, протяжённость которых может достигать нескольких тысяч километров. 
Движение судна по  попутным разрывам значительно повышает экономическую эффектив-
ность и безопасность плавания. В связи с этим информация о разрывах включается в состав 
гидрометеорологического обеспечения рейсов по  Северному морскому пути. Изучение про-
странственной и временной изменчивости таких характеристик разрывов, как их преоблада-
ющая ориентация, протяжённость и плотность расположения на акватории, требует большого 
количества исходных данных. В  настоящее время источником информации о  разрывах слу-
жат снимки ИСЗ низкого пространственного разрешения. Однако методов автоматического 
дешифрирования, позволяющих по  полученным данным рассчитать все основные характе-
ристики разрывов, не  существовало. В  статье представлен метод автоматической идентифи-
кации разрывов на снимках ИСЗ Suomi NPP инфракрасного диапазона с пространственным 
разрешением 375 м. При разработке метода использовалась свёрточная нейронная сеть U-net. 
Обучение модели проводилось на данных ручного экспертного дешифрирования разрывов на 
187 снимках ледяного покрова морей Лаптевых и  Восточно-Сибирского за ледовые сезоны 
2021–2024 гг. Коэффициент Жаккара составил 0,64, коэффициент Сёренсена – Дайса — 0,77. 
После обработки снимка моделью создаётся геопривязанное монохромное изображение 
идентифицированных разрывов. Затем по  разработанному алгоритму проводится выделе-
ние отдельных объектов-разрывов. Каждый такой объект представляет собой последователь-
ность отрезков, которые соответствуют относительно прямолинейным участкам разрыва. 
Географические координаты концов отрезков, заносимые в файл результатов, позволяют рас-
считывать протяжённость и  ориентацию каждого отдельного разрыва. Верификация разра-
ботанного метода проводилась на 30 снимках Suomi  NPP ледяного покрова морей Лаптевых 
и Восточно-Сибирского, прошедших экспертное дешифрирование и не использованных при 
обучении модели. По данным автоматического и ручного дешифрирования были рассчитаны 
модальная ориентация и  удельная длина разрывов, осреднённые по  квадратам 100×100 км. 
Средняя величина различий в  полученных значениях модальной ориентации составила 7°, 
а удельной длины разрывов — 15 м/км2.
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Введение

Дрейфующий ледяной покров в арктических морях неоднороден. В результате динамических 
процессов в  нём образуются протяжённые участки с  открытой водой, со временем покры-
вающиеся молодым льдом. Данные элементы ледяного покрова называются разрывами. 
Их длина может достигать нескольких тысяч километров, а  ширина  — нескольких киломе-
тров. Сформировавшиеся системы разрывов могут сохраняться в течение нескольких суток. 
Разрывы пронизывают моря в  различных направлениях, образуя естественные магистрали 
для эффективного судоходства в  Арктике. Таким образом, изучение разрывов представляет 
не только научный, но и экономический интерес.

В связи со значительными размерами разрывов наблюдение за ними осуществляется пре-
имущественно по информации с искусственных спутников Земли (ИСЗ). Снимки с низким 
пространственным разрешением (ПР) позволяют единовременно охватить всё море, что даёт 
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возможность получить распределение по акватории таких характеристик разрывов, как пре-
обладающая ориентация и плотность расположения. Для расчёта обобщённых характеристик 
требуются данные об  ориентации и  протяжённости каждого разрыва на снимке. На одном 
снимке количество разрывов может достигать 2–3 тыс., из-за чего процесс его обработки 
экспертом вручную занимает несколько часов. В  свою очередь данные с  ИСЗ поступают 
несколько раз за сутки. Таким образом, дешифрирование разрывов экспертом представля-
ется крайне трудоёмким процессом. В связи с этим перед исследователями уже долгое время 
стояла задача корректной автоматической фиксации разрывов на снимках ИСЗ.

Варианты решения данной проблемы для снимков различных диапазонов представлены, 
например, в  публикациях (Lee et  al., 2018; Lindsay, Rothrock, 1995; Röhrs, Kaleschke, 2012; 
Willmes, Heinemann, 2015). Работы (Hoffman et al., 2019, 2021; Reiser et al., 2020) посвящены 
идентификации разрывов на снимках оптического диапазона, при этом авторы предоставили 
результаты обработки большого количества снимков ИСЗ, позволяющие провести независи-
мую верификацию их алгоритма.

Алгоритм (Reiser et  al., 2020) идентифицирует разрывы на снимках инфракрасного диа-
пазона спектрорадиометра MODIS (англ. Moderate Resolution Imaging Spectroradiometer) 
ИСЗ Terra/Aqua с  ПР 1 км. В  результате работы данного метода каждому пикселю ставится 
в соответствие одно из значений: разрыв, лёд, вода, суша, облако или артефакт. Таким обра-
зом, все выделенные на снимке разрывы представляют собой совокупность пикселей, а  не 
набор отдельных объектов. Вследствие этого по  полученным данным в  дальнейшем нельзя 
рассчитать такую важную характеристику разрывов, как преобладающая ориентация. При 
определении плотности в пространстве данный алгоритм может давать завышенные резуль-
таты (Дымент и др., 2025), так как в качестве разрывов фиксируются также полыньи и зоны 
повышенной раздробленности ледяного покрова. Аналогичные проблемы возникают и  при 
попытке вычислить характеристики разрывов по методу (Hoffman et al., 2021).

В  ходе обработки снимка ИСЗ по  алгоритму (Hoffman et  al., 2019) идентифицируемые 
разрывы представляют собой отдельные объекты, что позволяет провести расчёт большин-
ства их характеристик. Алгоритм предназначен для дешифрирования разрывов на инфра-
красных снимках ИСЗ Terra/Aqua с  ПР 1 км. Однако согласно результатам верификации, 
проведённой авторами (Дымент и др., 2025), этот алгоритм крайне чувствителен к облачно-
сти. Полученные данные носят фрагментарный характер, что может привести к  некоррект-
ным значениям рассчитанных по ним характеристик разрывов.

Таким образом, до  настоящего времени не  существовало метода, позволяющего так 
осуществлять автоматическое дешифрирование разрывов в  дрейфующем ледяном покрове 
арктических морей по снимкам ИСЗ, чтобы по полученным данным была возможность рас-
считывать ориентацию и протяжённость каждого разрыва.

В настоящей статье изложен метод, позволяющий автоматически идентифицировать раз-
рывы на снимках ИСЗ Suomi NPP оптического диапазона в отсутствии плотной облачности. 
Каждый разрыв при этом будет представлен как отдельный объект, определённый последо-
вательностью координат концов прямолинейных отрезков, из которых состоит разрыв. Тем 
самым алгоритм позволит сформировать результаты в таком же виде, как и при экспертном 
дешифрировании.

Исходные данные

Разработанный алгоритм предназначен для автоматической идентификации разрывов в ледя-
ном покрове по  снимкам радиометра VIIRS (англ. Visible Infrared Imaging Radiometer Suite) 
ИСЗ Suomi NPP.

Снимки Suomi  NPP находятся в  свободном доступе, поступают регулярно, имеют ПР 
375 м и позволяют охватить акваторию одного моря единовременно. В настоящее время аль-
тернативы данным снимкам нет. Снимки радиометра MODIS спутников Terra и Aqua обла-
дают аналогичными достоинствами в  светлое время года, когда съёмка проводится в  види-
мом диапазоне спектра (ПР = 250 м). Однако на протяжении большей части ледового сезона 
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в  арктических морях (октябрь – февраль) снимки этих спутников информативны только 
в  инфракрасном диапазоне с  ПР = 1 км, что позволяет фиксировать лишь самые крупные 
разрывы.

В  Арктическом и  антарктическом научно-исследовательском институте (ААНИИ) име-
ется собственный архив изображений арктического ледяного покрова, созданный на основе 
данных VIIRS ИСЗ Suomi  NPP, получаемых с  помощью спутниковой наземной станции 
Российской научной экспедиции на архипелаге Шпицберген (РАЭ-Ш) ААНИИ. Для соз-
дания изображений архива используются два спектральных канала VIIRS из группы Imagery 
(I) Bands с  пространственным разрешением 375 м: канал I4 (3,55–3,93 мкм), относящийся 
к  средневолновому инфракрасному диапазону, и  канал I5 (10,5–12,4 мкм), относящийся 
к  длинноволновому инфракрасному диапазону. Композитные трёхканальные изображения 
формируются путём объединения спектральных каналов I4 и I5 в комбинацию 554.

На протяжении нескольких лет в ААНИИ по изображениям из архива проводилось руч-
ное экспертное дешифрирование разрывов в ледяном покрове морей Лаптевых и Восточно-
Сибирского. В  ходе ручного дешифрирования эксперт при помощи геоинформационной 
системы ArcMap фиксировал географические координаты концов относительно прямоли-
нейных участков каждого разрыва. Полученные данные о разрывах заносились в архив в виде 
текстовых файлов данных и векторных слоёв (шейп-файлов).

Информация о разрывах из архива данных ААНИИ использовалась при разработке алго-
ритма автоматической идентификации разрывов, а также при его верификации.

Разработка метода

Подготовка данных

Для создания метода автоматического дешифрирования разрывов применялись средства 
машинного обучения (нейросеть).

Для обучения модели использовались композитные изображения из архива данных 
ААНИИ. В обучающую выборку вошли 66 спутниковых снимков, охватывающих акваторию 
моря Лаптевых, и 121 снимок по Восточно-Сибирскому морю. Обучающая выборка включает 
снимки, сделанные в период с ноября по май 2021–2024 гг.

  
	 а	 б	 в

Рис. 1. Пример фрагмента исходного композитного изображения VIIRS размером  
512×512 (а), соответствующая ему маска (б) и результаты, полученные моделью (в)

Данные о разрывах со снимков, вошедших в обучающую выборку, были преобразованы 
из шейп-файлов в  бинарные растровые маски, соответствующие исходным изображениям. 
Пикселям масок, соответствующим фону (отсутствию разрывов), присваивалось значе-
ние 0, а  пикселям разрывов  — значение 1. Перед подачей данных в  свёрточную нейронную 
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сеть композитные изображения были нормализованы методом Min-Max Scaling, при котором 
значения пикселей каждого канала масштабировались в диапазон от 0 до 1. Далее изображе-
ния и  соответствующие им маски были разбиты на фрагменты размером 512×512 пикселей 
с перекрытием 50 % (шаг 256 пикселей). Такая стратегия формирования фрагментов изобра-
жений позволяет увеличить объём обучающей выборки, а также снизить влияние артефактов, 
возникающих на границах фрагментов. Суша на исходных изображениях не маскировалась. 
Пример фрагмента композитного изображения и  соответствующая ему маска представлены 
на рис. 1а и б (см. с. 45).

В  процессе предобработки из выборки были удалены фрагменты полностью чёрных 
масок. Для обучения модели использовалась итоговая тренировочная выборка, состоящая из 
22 422 пар изображений и соответствующих им масок, а также тестовая выборка из 5606 пар 
изображений и масок.

Разработка модели

Для решения задачи идентификации разрывов использовалась свёрточная нейронная сеть 
U-Net, которая продемонстрировала высокую эффективность при обработке изображений 
в  задачах спутниковой сегментации. Обучение модели реализовано в  Python с  использова-
нием фреймворка TensorFlow/Keras на GPU.

Модель обучалась с применением оптимизатора Adam с начальной скоростью обучения 
0,0001. В  качестве функции потерь использовалась функция потерь Дайса, которая хорошо 
работает с несбалансированными классами.

Для предотвращения переобучения применялась стратегия ранней остановки, при кото-
рой обучение прерывается, если семь эпох подряд не  наблюдается улучшение функции 
потерь на тестовой выборке. Дополнительно использовался механизм адаптивного умень-
шения скорости обучения, который снижал скорость обучения в  пять раз при отсутствии 
улучшений на тестовой выборке в течение трёх эпох подряд. Минимальное значение скоро-
сти обучения ограничивалось величиной 1·10–6. Для сохранения лучшей модели применялся 
вызов функции, фиксирующей веса модели с  минимальным значением функции потерь на 
тестовых данных. В результате обучение модели было остановлено на 47-й эпохе с использо-
ванием стратегии ранней остановки, когда улучшение функции потерь на тестовом наборе 
перестало наблюдаться.

Для оценки качества сегментации применялись две метрики: коэффициент Жаккара 
(англ. Intersection over Union  — IoU) и  коэффициент Сёренсена – Дайса (Dice). На момент 
окончания обучения значения метрик на тестовом наборе показали следующие значения: 
IoU — 0,64, Dice — 0,77, функция потерь — 0,23 (рис. 2).

	 а	 б	 в

Рис. 2. Изменение метрик качества IoU (а), Dice (б) и функции потерь (в)  
на обучающей (1) и тестовой (2) выборках в процессе обучения модели
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Результат обработки снимка моделью представляет собой геопривязанное бинарное изо-
бражение (см.  рис. 1в). Расположенные рядом белые пиксели формируют полигон, соответ-
ствующий одному объекту-разрыву.

Верификация метода

Расчёт характеристик разрывов

Для верификации разработанного метода из архива ААНИИ были отобраны 30 снимков 
Suomi  NPP акватории морей Лаптевых и  Восточно-Сибирского за ледовые сезоны 2022–
2025 гг. Выбранные снимки прошли экспертное дешифрирование и  не использовались при 
обучении модели. По  данным ручной обработки каждого снимка были рассчитаны модаль-
ная ориентация и  удельная длина разрывов по  квадратам сетки 100×100 км, охватывающей 
акватории обоих морей. Удельная длина является мерой плотности разрывов в пространстве 
и представляет собой отношение суммарной протяжённости разрывов в квадрате к его пло-
щади. Общее количество квадратов, обеспеченных данными, составило 1325.

Поскольку каждый полигон, охватывающий разрыв, является отдельным объектом, 
вокруг него можно описать прямоугольник. Большинство разрывов имеют вытянутую форму, 
приближённую к  прямой линии. Вследствие этого их ориентация и  протяжённость будут 
совпадать с  соответствующими параметрами отрезка, соединяющего середины меньших 
сторон описанного прямоугольника (ОП) (рис. 3а). При наличии генерального направления 
разрыва и небольшого числа ответвлений метод ОП верно передаёт модальную ориентацию, 
но даёт значительные потери в протяжённости (см. рис. 3б). В случаях, когда форма разрыва 
далека от линейной и стороны ОП получаются приблизительно равными, ошибка возникает 
при определении обоих параметров (см. рис. 3в).

  
	 а	 б	 в

Рис. 3. Примеры представления длины и ориентации разрыва методом ОП

Результаты сравнения модальной ориентации и удельной длины разрывов, рассчитанных 
по  методу ОП и  по данным экспертного дешифрирования, которое принято за эталонное, 
приведены в таблице.

Как можно заметить, среднее значение отличия модальной ориентации по  методу ОП 
от  эталонной составило 9°, случаи существенных различий, превышающих 30°, составляют 
менее 3 %. Среднее отличие значений удельной длины, рассчитанных по  данным ручного 
дешифрирования, от  полученных по  методу ОП составило 20 м/км2. Это свидетельствует 
о том, что определение протяжённости разрывов по методу ОП в среднем занижает истинные 
значения. Решением данной проблемы является выделение отдельных ветвей разрывов как 
самостоятельных объектов с представлением их в виде ломаных линий.
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Различия значений модальной ориентации и удельной длины разрывов,  
рассчитанных по данным автоматического и ручного дешифрирования (в %)

Различия ориентации, град Расчёт по методу описанного 
прямоугольника

Расчёт по алгоритму  
«ветвления» (АВ)

Модальная ориентация
0–10 69,9 79,2
10–20 22,5 15,9
20–30 4,9 3,7
30–40 1,9 0,8
40–50 0,2 0,2
50–60 0,4 0,2
60–70 0,1 0
70–80 0 0
80–90 0,1 0
Среднее значение, град 9,0 7,0
Среднеквадратичное отклонение, град 8,4 6,9

Удельная длина
Среднее значение, м/км2 20 15
Среднеквадратичное отклонение, м/км2 19,8 16,0

Алгоритм ветвления

Как было описано ранее, после обработки снимка моделью получаются бинарные изобра-
жения, содержащие только разрывы. С  помощью встроенной функции пакета skimage для 
Python производится выделение отдельных объектов и их последующая скелетизация. Затем 
на каждой линии фиксируются координаты всех точек 
смены направления. Поиск прямолинейных участков, 
поворотов и ветвления осуществляется путём анализа бли-
жайших соседей по  вертикали, горизонтали и  диагонали 
для каждого пикселя. Выявленные и обработанные непре-
рывные линии, соответствующие одной ветви разрыва, 
удаляются с  изображения, что обеспечивает корректность 
работы и конечность процесса. Также алгоритм предусма-
тривает сглаживание небольших углов, чтобы сократить 
количество точек в  одном объекте при дальнейшем рас-
чёте характеристик разрывов. Эта операция проводится 
на основе аппроксимации при помощи парной линей-
ной регрессии. Таким образом, все идентифицированные 
моделью разрывы разбиваются на наборы вершин начала, 
конца и  смены направления каждой из их ветвей, анало-
гично результатам экспертного дешифрирования.

Пример визуализации результатов работы АВ пред-
ставлен на рис. 4.

Снимки, отобранные в  верификационную выборку, 
после автоматического дешифрирования разработанной 
моделью были дополнительно обработаны АВ. По  полу-
ченным данным рассчитаны значения характеристик раз-
рывов и  сопоставлены с  данными ручного дешифрирова-
ния (см. таблицу). 

Рис. 4. Пример представления 
разрыва по алгоритму ветвления
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Как можно заметить, среднее значение отклонений в модальной ориентации несколько 
уменьшилось относительно метода ОП и  составило 7°, число случаев с  незначительной 
ошибкой в  определении модальной ориентации (менее 10°) возросло почти на 10 %. Также 
произошло снижение различий с  данными ручного дешифрирования в  значениях удельной 
длины разрывов. По  гистограмме, приведённой на рис. 5, видно, что применение АВ суще-
ственно снижает количество сильных занижений протяжённости разрывов (более чем на 
20 м/км2) и почти на 10 % повышает долю случаев с близкими к эталонным значениям удель-
ной длины (различия от –20 до 20 м/км2). Средняя величина занижения составила 15 м/км2. 
По  отношению к  среднему значению удельной длины разрывов, рассчитанному по  вери-
фикационной выборке, это приблизительно соответствует занижению на 25 %. Анализ слу-
чаев с  отрицательными значениями различий, т. е. когда удельная длина разрывов по  дан-
ным ручного дешифрирования оказалась меньше, чем рассчитанная по данным автоматиче-
ской идентификации, выявил ошибки в работе эксперта (пропуски разрывов на снимке при 
дешифрировании). Таким образом, можно сделать вывод о целесообразности использования 
АВ после идентификации разрывов на снимке с помощью построенной модели.

Рис. 5. Разность между значениями удельной длины разрывов, рассчитанными  
по данным ручного дешифрирования и автоматического по методу АВ (1) и ОП (2)

Заключение

Согласно результатам верификации разработанного метода отличия получаемых результатов 
от экспертной ручной сколки в среднем невелики. Из этого следует, что использование дан-
ных, полученных при автоматической идентификации разрывов на снимках ИСЗ, не внесёт 
существенных ошибок при последующем определении их обобщённых характеристик. Кроме 
того, применение автоматического дешифрирования исключает элемент субъективности, 
который присутствует при ручной обработке снимков различными экспертами.

Таким образом, созданное программное обеспечение даёт возможность значительно 
пополнить электронный архив данных о  разрывах в  кратчайшие сроки. Сформированный 
архив будет использоваться для исследования пространственной и временной изменчивости 
характеристик разрывов в арктических морях. Данные о разрывах также будут востребованы 
в ААНИИ при составлении краткосрочных прогнозов преобладающей ориентации разрывов 
на трассе Северного морского пути, которые входят в состав гидрометеорологического обе-
спечения судоходства.

Как было сказано ранее, из доступных источников оптимальными для изучения разрывов 
являются снимки с ИСЗ Suomi NPP, однако пополнение базы данных возможно и с исполь-
зованием информации от  других спутников. В  связи с  этим планами по  развитию метода 
является его распространение на снимки спутников Terra и Aqua.
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Automatic identification of sea ice leads  
from Suomi NPP satellite images

E. G. Boikaya, K. G. Kortikova, L. N. Dyment, A. A. Ershova

Arctic and Antarctic Research Institute, Saint Petersburg 199397, Russia 
E-mail: ldyment@yandex.ru

The impact of dynamic factors on drifting ice cover in the Arctic seas causes formation of sea ice leads 
that can elongate up to several thousand kilometers. Ship movement along the favorable lead improves 
significantly the economic efficiency and safety of navigation. In this regard, information on sea ice 
leads is included as part of hydrometeorological support of voyages along the Northern Sea Route. 
The study of spatial and temporal variability of such characteristics of sea ice leads as prevailing ori-
entation, length and spatial density in the water area requires a large amount of initial data. At pres-
ent, low-resolution satellite images serve as a source of information on sea ice leads. However, so far 
there has been no automatic interpretation method to calculate all principal sea ice lead characteristics. 
The paper presents a method for automatic identification of leads from Suomi NPP infrared images 
with a spatial resolution of 375 m. The method is developed on the basis of a U-net convolutional neu-
ral network. The model is trained on data of manual expert interpretation of sea ice leads in 187 images 
of ice cover of the Laptev and East Siberian seas of 2021–2024 ice seasons. Jaccard coefficient is 0.64, 
and Dice coefficient is 0.77. After processing the image, the model creates a georeferenced mono-
chrome image of the identified leads. Then individual lead objects are detected using the developed 
algorithm. Each lead object is a sequence of segments that correspond to relatively straight segments 
of the lead. The geographic coordinates of the segments ends are entered into the results file and are 
used to calculate the length and orientation of each individual lead. The developed method is verified 
using 30 Suomi NPP images of ice cover of the Laptev and East Siberian seas, preliminary interpreted 
by expert and excluded from model training. Based on the data from automatic and manual interpreta-
tion, the modal orientation and normalized length of leads are calculated, averaged over 100×100 km 
squares. The mean difference is 7° for the values of modal orientation and 15 m/km2 for normalized 
length.
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