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Представлен алгоритм наукастинга движения облачности в  Азиатско-Тихоокеанском реги-
оне по спутниковым изображениям в инфракрасном диапазоне с геостационарных космиче-
ских аппаратов Himawari-8/9. Алгоритм основывается на разработанной авторами гибридной 
нейросетевой модели HybridCloudCast, объединяющей преимущества детерминированного 
и  статистического подходов в  задаче краткосрочного прогнозирования. Первый из них обе-
спечивает качественное предсказание эволюции облачности за счёт применения физически 
обоснованной модели, а  второй, использующий диффузионную нейронную сеть, позволяет 
повысить детализацию и визуальное качество прогнозных изображений. В качестве входной 
информации для HybridCloudCast использовались изображения с  яркостной температурой 
канала № 14 прибора AHI (англ. Advanced Himawari Imager). В  дополнение к  спутниковым 
изображениям нейросетевая модель применяет безоблачный композит, позволяющий улуч-
шить точность прогноза за счёт учёта яркостных характеристик подстилающей поверхности. 
Разработанная модель HybridCloudCast формирует краткосрочный прогноз, временное разре-
шение которого составляет 10 мин, а пространственное — 2 км. Проведённая валидация пока-
зала, что по  точности предложенный алгоритм не  уступает аналогам, обеспечивая при этом 
более высокое временное разрешение. Модель способна формировать прогнозные изображе-
ния на трёхчасовом горизонте с ошибкой RMSE (англ. Root Mean Squared Error), не превыша-
ющей 12 K, и коэффициентом корреляции не ниже 0,84.
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Введение

Наукастинг, представляющий собой краткосрочный прогноз метеорологических процес-
сов на временных горизонтах от  нескольких минут до  нескольких часов, является важным 
направлением современной прикладной метеорологии. В  контексте анализа атмосферной 
конвекции он направлен на оперативную оценку эволюции облачности с высоким простран-
ственно-временным разрешением.

Малые конвективные ячейки и  мезомасштабные конвективные системы, возникающие 
вследствие нестационарных термодинамических процессов в  тропосфере, часто приводят 
к опасным гидрометеорологическим явлениям — ливням, порывистому ветру и турбулентно-
сти, особенно опасным для авиации (Chen H. et  al., 2024; Guo et  al., 2022). Поэтому наука-
стинг движения облачности играет важную роль в раннем обнаружении зон развития конвек-
ции и оценке вероятности развития опасных атмосферных явлений.

В спутниковой метеорологии такой вид краткосрочного прогноза основывается на после-
довательном анализе изображений, получаемых, в  основном, с  геостационарных метеоро-
логических космических аппаратов (КА). Такие КА обеспечивают высокую частоту съёмки 
в видимом и инфракрасном (ИК) диапазонах, что делает их незаменимыми в регионах с огра-
ниченной наземной сетью наблюдений, а также акваторий морей и океанов.
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Дальневосточный регион Российской Федерации относится к числу территорий с недо-
статочной плотностью радиолокационных и наземных пунктов наблюдений, что делает раз-
работку и  применение технологий наукастинга по  спутниковым данным особенно актуаль-
ными. Такие методы имеют большое значение для решения ряда прикладных задач: от обе-
спечения авиационной безопасности до  оптимизации работы солнечных электростанций 
и управления рисками, связанными с опасными явлениями погоды.

Цель настоящей работы  — разработка алгоритма наукастинга движения облачности 
в  Азиатско-Тихоокеанском регионе на основе спутниковой информации в  инфракрасном 
диапазоне электромагнитного спектра. Алгоритм основан на применении нейросетевого под-
хода и ориентирован на формирование не только точного прогноза, приближенного к реаль-
ным спутниковым данным, но и корректных изображений, учитывающих физические прин-
ципы динамики облачности в атмосфере.

Текущее состояние исследований

На современном этапе развития методов и  алгоритмов дистанционного зондирования 
Земли и  краткосрочного прогнозирования атмосферных процессов выделяют две основ-
ные группы подходов к наукастингу движения облачности по спутниковым данным. В пер-
вую группу входят традиционные методы, к  которым относятся алгоритмы оптического 
потока и их модификации (Baker, Matthews, 2004; Wood-Bradley et al., 2012; Zhuk et al., 2017). 
Они позволяют эффективно отслеживать перемещение облаков, но сталкиваются с  трудно-
стями при воспроизведении изменений их структуры из-за гипотезы о постоянстве яркости. 
Также к этой группе принадлежит вероятностный подход STEPS (англ. Short-Term Ensemble 
Prediction System), позволяющий оценивать неопределённость прогноза, но склонный к сгла-
живанию мелкомасштабных деталей из-за использования стохастических возмущений (Smith 
et al., 2024).

Вторая группа включает нейросетевые методы, позволяющие моделировать сложные 
нелинейные зависимости в  спутниковых наблюдениях без явной параметризации физи-
ческих процессов (Prudden et  al., 2020). Такие методы автоматически выявляют скрытые 
шаблоны в многомерных данных, за счёт чего обеспечивают более детализированное описа-
ние эволюции облачности, особенно в  условиях активной конвекции. Нейросетевые архи-
тектуры можно разделить на детерминированные и  статистические. Первые из них форми-
руют однозначное прогнозное поле, а вторые позволяют учитывать неопределённость и соз-
дают прогноз исходя из вероятностного распределения возможных состояний атмосферных 
процессов.

Одними из первых архитектур искусственных нейронных сетей (ИНС), используе-
мых для решения задач наукастинга, стали свёрточные рекуррентные модели, относящи-
еся к  классу детерминированных. К  ним относится модель ConvLSTM, показавшая хоро-
шие результаты в прогнозировании осадков с  горизонтом прогноза до двух часов (Shi et al., 
2015). Дальнейшее развитие получили архитектуры на специализированных ячейках памяти, 
например, PredRNN2 (Wang Y. et al., 2023), но они имеют ограничения в виде затухания гра-
диентов и  потери контекста при увеличении длины входной последовательности. Для пре-
одоления этих ограничений применяют трансформерные архитектуры, использующие меха-
низм самовнимания. В  качестве примера подобных моделей можно привести модель DaYu 
(Wei et al., 2024), позволившую продлить заблаговременность прогноза, но при этом имевшую 
чрезмерное сглаживание выходных полей к концу трёхчасового интервала прогноза.

В  общем виде детерминированные модели обеспечивают устойчивый прогноз направ-
ления и скорости движения облачности, но ограничены по времени из-за накопления оши-
бок и потери деталей (Кучма и др., 2023; Ehsani et al., 2022; Tran, Song, 2019). С другой сто-
роны, статистические модели, такие как генеративно-состязательные нейронные сети 
(англ. Generative Adversarial Networks  — GAN), формируют более реалистичные прогнозные 
поля. Примерами успешных решений являются модели TS-RainGAN (Wang R. et  al., 2023) 
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и NowcastNet (Zhang et al., 2023), продемонстрировавшие высокое качество прогноза осадков 
по радиолокационным данным. Однако и GAN-сети имеют минусы, к которым можно отне-
сти проблему вариативности результатов прогноза, нестабильность обучения и наличие арте-
фактов на изображениях (Wen et al., 2025).

Одним из перспективных направлений статистических методов, способным частично 
преодолеть ограничения GAN-сетей, являются диффузионные ИНС. Эти модели осно-
ваны на принципе последовательного добавления и  удаления шума в  процессе обучения, 
что позволяет формировать прогнозные поля с  высокой детализацией и  физически обо-
снованной структурой. Примером успешного применения в  задачах краткосрочного про-
гнозирования стала модель LDCast (Leinonen et al., 2023), предназначенная для наукастинга 
осадков по радиолокационным данным, а также модель SATcast (Chen et al., 2025), разрабо-
танная для наукастинга движения облачности по  спутниковым данным. В  последнем при-
мере дополнительно использовались прогностические данные из модели FuXi (Chen L. et al., 
2024), что позволило значительно продлить заблаговременность прогноза движения конвек-
тивной облачности до  24 ч. Однако такие модели требуют существенных вычислительных 
ресурсов и тщательной настройки гиперпараметров (Chen, 2023). Тем не менее при коррект-
ной реализации они способны обеспечить хорошее качество прогноза, особенно в  задачах, 
где важна физическая правдоподобность и воспроизведение мелкомасштабных деталей (Nai 
et al., 2024).

В  рамках настоящей работы рассматривается разработанная авторами гибридная ней-
росетевая модель HybridCloudCast, архитектура которой основана на объединении детерми-
нистического и статистического подходов, что позволяет использовать преимущества обоих 
направлений — устойчивость прогноза и его пространственную детализацию. Основная идея 
заключается в  последовательной обработке информации: сначала формируется начальный 
прогноз с  помощью детерминистической модели, который затем уточняется с  использова-
нием диффузионной ИНС (Gong et  al., 2024). Такой гибридный подход направлен на ком-
пенсацию недостатков детерминированных моделей, которые, несмотря на высокую стабиль-
ность и воспроизводимость результатов, склонны к сглаживанию мелкомасштабных деталей 
из-за минимизации среднеквадратичных или корреляционных функций потерь.

Используемые данные

В работе рассматривается Азиатско-Тихоокеанский регион с областью интереса в диапазоне 
от 30 до 60° с. ш. и от 100 до 180° в. д., включая Восточный Китай, Дальний Восток России, 
Японское и  Охотское моря. Указанный регион характеризуется сложной пространственно-
временной изменчивостью атмосферных процессов, обусловленной взаимодействием мус-
сонных течений и активной циклонической деятельностью.

В качестве источника информации был выбран инфракрасный канал с центральной дли-
ной волны 11,2 мкм (канал № 14) многоспектрального сканера AHI (англ. Advanced Himawari 
Imager), установленного на космических аппаратах серии Himawari. Этот КА обеспечивает 
непрерывное наблюдение за состоянием атмосферы и подстилающей поверхности с высокой 
частотой съёмки (каждые 10 мин) в 16 спектральных диапазонах, включая видимый, ближний 
инфракрасный и  тепловой диапазоны. Выбранный канал относится к  атмосферному окну 
прозрачности, в котором поглощение излучения водяным паром минимально. Это позволяет 
эффективно регистрировать тепловое излучение облаков и подстилающей поверхности, что 
делает его полезным для выявления и  отслеживания конвективной облачности, имеющей 
преобладающее значение в  задаче наукастинга с  точки зрения потенциального формирова-
ния опасных явлений погоды.

На вход нейросетевой модели подавались изображения со значениями яркостной тем-
пературы канала № 14, представленные матрицей 512×512 пикселей с  пространственным 
разрешением 2 км на пиксель. Данные были организованы в  виде последовательностей, 
каждая из которых состояла из 30 кадров. При этом первые 10 изображений последователь-
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ности использовались в качестве входных данных, а следующие 20 кадров — в качестве целе-
вой выходной последовательности, покрывающей временной горизонт в 200 мин. В качестве 
дополнительного входного канала для нейросетевой модели применялся безоблачный ком-
позит, под которым понимается оценка яркостной температуры подстилающей поверхности. 
Он формировался для каждого часового временного интервала в  сутках (0,  1, 2, …,  23 ч) на 
основе двухнедельной истории наблюдений.

Для обучения нейросетевой модели все значения яркостной температуры были нормали-
зованы в диапазоне от 0 до 1 для улучшения сходимости обучения. Итоговая выборка, данные 
для которой были получены в период наблюдений с 2020 по 2024 г., составила 21 тыс. приме-
ров последовательностей и безоблачных композитов. Выборка была случайным образом раз-
делена на обучающий (80 %), валидационный (10 %) и тестовый (10 %) наборы.

Описание модели

Предлагаемая гибридная модель HybridCloudCast для наукастинга движения облачности 
основана на объединении детерминистического и статистического подходов. В качестве базо-
вой детерминистической модели используется модифицированная в  настоящей работе вер-
сия генератора из GAN-архитектуры NowcastNet. Выбор этой модели обусловлен её высо-
кими показателями точности в задачах наукастинга осадков, особенно на начальных этапах 
прогноза, а  также реализацией в  ней физически обоснованного модуля, моделирующего 
принципы динамики атмосферы. Для дальнейшего улучшения пространственно-временной 
структуры прогноза и  увеличения чёткости мелких деталей применяется метод статисти-
ческой постобработки на основе диффузионной сети, предложенный в  работе (Gong et  al., 
2024). Данный этап обеспечивает реконструкцию локальных градиентов и  восстановление 
структуры облачных образований. Общая блок-схема нейросетевой модели приведена на рис. 1.

Рис. 1. Схема нейросетевой модели HybridCloudCast
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Блок «Генератор» (далее G), представленный на рис. 1, является модифицированной вер-
сией генератора из архитектуры NowcastNet. Исходные изображения яркостной температуры, 
обозначенные на рис. 1 как «Входная последовательность» (далее VP), поступают в  подсеть 
«Эволюционная сеть» (далее EN), которая вместе с преобразователем «Эволюционный опе-
ратор» (далее EO) реализует принципы динамической эволюции полей яркостной темпера-
туры, основанные на законе сохранения непрерывности потока. На выходе EN формируются 
три карты признаков: u и v — компоненты горизонтального и вертикального смещения пик-
селей изображения, а также intens — карта изменений яркостной температуры. Эти параме-
тры используются EO для построения предварительных прогнозных кадров. Процесс форми-
рования происходит итерационно, начиная с последнего известного кадра из VP. Финальным 
этапом формирования детерминистического прогноза становится обработка объединённой 
информации из VP и промежуточных прогнозных кадров с помощью автоэнкодерной архи-
тектуры, обозначенной на рис. 1 как «Генераторный автоэнкодер». На выходе формируются 
окончательные кадры детерминистического прогноза, отмеченные на схеме как «Детальный 
прогноз».

Модификация генератора, заимствованного из архитектуры NowcastNet, заключалась 
в  интеграции дополнительного модуля обработки, предназначенного для учёта информа-
ции о  подстилающей поверхности на основе кадров безоблачного композита, обозначен-
ных на рис. 1 как «Композит». Она обусловлена необходимостью корректного моделирова-
ния процессов горизонтального перемещения облачных масс при возникновении участков 
с отсутствующей или частично рассеивающейся облачностью. Интегрированный в состав EN 
модуль обработки композита реализован в виде свёрточной сети на основе кодирующей части 
архитектуры U-Net. На рис. 2 представлена полная схема модифицированной EN, включаю-
щая данный модуль, обозначенный как «Композитный модуль». 

Рис. 2. Схема модифицированной EN

В  его основе лежат блоки C Block. В  отличие от  оригинальных D Block, использован-
ных в  архитектуре NowcastNet, данные блоки не  содержат параллельных ветвей обработки 
сигнала с  последующим объединением, что делает их линейными по  отношению к  потоку 
информации. Тем не  менее каждый C Block состоит из стандартных функциональных эле-
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ментов: свёрточного слоя с ядром размером 3×3 (3×3 Conv), за которым следуют слой пакет-
ной нормализации (англ. Batch Normalization  — BN) и  слой активации с  функцией ReLU, 
полное описание и параметры которых приведены в работе (Zhang et al., 2023). Выходы каж-
дого уровня этого модуля объединяются с соответствующими слоями EN, обеспечивая пере-
дачу информации о подстилающей поверхности в декодирующую часть сети.

Статистическая часть разработанной модели HybridCloudCast основана на объедине-
нии диффузионной сети с  вариационным автоэнкодером VQGAN (англ. Vector Quantised 
Variational Autoencoder trained as GAN) (Gong et  al., 2024). Одна из ключевых особенностей 
диффузионных моделей заключается в их вычислительной сложности, связанной с необходи-
мостью многократного шумоподавления для формирования выходного кадра. Для снижения 
этой нагрузки используется автоэнкодер типа VQGAN, преобразующий данные в  компакт-
ное скрытое пространство с минимальными потерями информации. Он состоит из кодиров-
щика и  декодировщика, обозначенных на рис. 1 как «Кодировщик автоэнкодера» (далее E) 
и  «Декодировщик автоэнкодера» (далее D) соответственно. Кодировщик преобразует вход-
ные кадры яркостной температуры в  дискретное скрытое представление, а  декодировщик 
восстанавливает изображение после обработки в скрытом пространстве.

В  качестве диффузионной ИНС в  настоящей работе используется модель CasFormer 
(Gong et  al., 2024), основанная на архитектуре DiT (англ. Diffusion Transformer)  — транс-
формера с  диффузионным механизмом (Peebles, Xie, 2023). Эта модель представляет собой 
нейронную сеть, ориентированную на восстановление структуры многомерных простран-
ственных полей из зашумлённого представления. Диффузионная ИНС обучена определять 
(генерировать) шум, который на этапе обратного процесса итеративно вычитается из зашум-
лённого изображения. Каждый шаг обратного процесса формирует более устойчивое и дета-
лизированное представление выходного поля, что позволяет получать прогнозы с физически 
корректной структурой и сохранением мелкомасштабных деталей.

Обработка прогноза в  рамках статистического подхода реализуется в  несколько этапов. 
На первом этапе выходные кадры детерминистического прогноза с  использованием E пре-
образуются в  компактное скрытое представление, обозначенное на рис. 1 как z-cond. Далее 
модель CasFormer обрабатывает это представление и  генерирует его стохастически изме-
нённый аналог, отмеченный на рис. 1 как zʹ-cond. На завершающем этапе скорректирован-
ное скрытое представление с  помощью D преобразуется обратно в  пиксельное простран-
ство, формируя окончательные прогнозные кадры, обозначенные на рис. 1 как «Результат 
прогноза».

Обучение нейросетевой модели

Обучение разработанной нейросетевой модели HybridCloudCast проводилось в два этапа. На 
первом этапе осуществлялась настройка детерминистической части, формирующей пред-
варительный прогноз динамики облачных структур. Подход к обучению данной части архи-
тектуры был взят из работы (Zhang et al., 2023), реализующей GAN-архитектуру NowcastNet, 
и  адаптирован с  учётом особенностей используемых данных. На первом шаге обучалась 
только модифицированная EN с  использованием алгоритма оптимизации Adam (Kingma, 
Ba, 2017). В  отличие от  оригинальной задачи прогнозирования осадков в  настоящей работе 
применялась комбинированная функция потерь, включающая две метрики: среднеквадра-
тическая ошибка (англ. Mean Squared Error  — MSE) и  индекс структурного сходства (англ. 
Structural Similarity Index — SSIM), что позволило учитывать как точность воспроизведения 
яркостной температуры, так и пространственную структуру облаков:

( )α βdet MSE( , ) 1 SSIM( , ) ,evo evoL I I I I= × + -

где I — реальные значения яркостной температуры из обучающей выборки; Ievo — значения, 
полученные на выходе EO; α и β — весовые коэффициенты (10 и 5 соответственно), баланси-
рующие вклад каждой составляющей.
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Следующим шагом обучения модели HybridCloudCast стало дообучение полной детер-
министической модели G. На данном этапе весовые коэффициенты EN оставались «заморо-
женными», что позволило сохранить устойчивое представление динамики облачности, полу-
ченное на предыдущем этапе. Целевой функцией потерь была ранее определённая функция 
Ldet, но в  отличие от  первого шага, где в  качестве предсказанного значения использовался 
выход EO, здесь Ievo представлял собой результат, сгенерированный уже после прохождения 
через автоэнкодерную часть. Сам процесс обучения проводился аналогично предыдущему 
шагу.

На втором этапе осуществлялось обучение статистической части архитектуры. Этот 
процесс включал в  себя несколько шагов. На первом шаге проводилась предварительная 
настройка автоэнкодерного модуля, состоящего из E и  D. Процесс заключался в  миними-
зации расхождения между исходными изображениями яркостной температуры и  их рекон-
струкцией, полученной после прохождения через автоэнкодер (Gong et al., 2024).

Вторым шагом стало обучение диффузионной сети CasFormer, отвечающей за вероят-
ностное уточнение прогноза. Оно проводилось с  использованием оптимизатора AdamW 
и целевой функции потерь на основе MSE (Gong et al., 2024):

ε εMSE( , ),dif difL =

где ε  — истинное скрытое представление изображения яркостной температуры из обучаю-
щей выборки, полученное с помощью E; εdif — восстановленное скрытое представление после 
процедуры вычитания шумовых составляющих, сгенерированных нейронной сетью.

Для формирования обучающей выборки, используемой при обучении диффузионной 
ИНС, был задействован предварительно обученный E. С его помощью были получены скры-
тые представления как для реальных кадров из обучающей выборки, так и  для прогнозных 
кадров, сгенерированных моделью G.

Для реализации процесса обучения всех рассмотренных частей модели HybridCloudCast 
использовался вычислительный комплекс на базе четырёх графических ускорителей NVIDIA 
A5000 24 ГБ. Распределение вычислений между устройствами осуществлялось с  учётом 
вычислительной сложности и объёма каждой из моделей.

Обсуждение результатов

Для оценки качества работы разработанной модели HybridCloudCast использовались 
метрики, рассчитанные на основе тестовой выборки, данные которой не участвовали в про-
цессе обучения и настройки параметров нейросетевых моделей. В качестве основных показа-
телей точности восстановления пиксельных значений были выбраны корень среднеквадрати-
ческой ошибки RMSE (англ. Root Mean Squared Error) и коэффициент корреляции Пирсона 
PCC (англ. Pearson Correlation Coefficient). Эти метрики позволяют оценить степень соответ-
ствия предсказанных и истинных значений в пикселе, акцентируясь на точности воспроиз-
ведения моделью радиометрической информации. Для анализа структурного и  текстурного 
соответствия использовались метрики пикового отношения сигнал/шум PSNR (англ. Peak 
Signal-to-Noise Ratio) и  SSIM. Метрика PSNR широко применяется в  задачах оценки каче-
ства изображений, но при этом базируется исключительно на среднеквадратической ошибке 
и не учитывает особенности восприятия визуальной информации человеком, что может при-
водить к противоречивым оценкам. Например, размытые изображения с низкой текстурной 
вариативностью могут демонстрировать высокие значения PSNR, несмотря на потерю дета-
лизации. Метрика SSIM учитывает три аспекта восприятия (яркость, контраст и  структуру) 
и  более адекватно отражает визуальное сходство. Однако этот индекс чувствителен к  про-
странственным сдвигам и локальным деформациям, что немного ограничивает его примени-
мость в задачах с нестационарной динамикой облаков. Учитывая ограничения традиционных 
пиксельных и структурных метрик, которые усредняют информацию по всему полю изобра-
жения и могут не отражать локальные особенности пространственного распределения облач-
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ности, в  качестве дополнительного критерия был использован FID (англ. Frechet Inception 
Distance) (Heusel et al., 2018). Эта метрика оценивает расстояние между многомерными рас-
пределениями реальных и сгенерированных изображений в пространстве признаков, извле-
чённых с  помощью предобученной сети Inception-v3. Критерий FID позволяет частично 
компенсировать указанные недостатки, так как оценивает информацию как о  локальной 
текстуре и чёткости изображений, так и об их статистической достоверности, что даёт более 
комплексную оценку, сочетающую точность восстановления интенсивности и качество изо-
бражения. В практическом применении значения метрики FID в диапазоне от 0 до 5 можно 
рассматривать как почти идеальное соответствие; от 5 до 20 — как хорошее, с едва заметными 
искажениями; от  20 до  50  — как удовлетворительное, с  явно выраженными искажениями 
и шумами; а свыше 50 — как неудовлетворительное, характеризующееся сильными артефак-
тами и размытостью.

Оценка качества прогнозирующей способности модели HybridCloudCast проводи-
лась с учётом её иерархической структуры и охватывала три ключевых этапа формирования 
краткосрочного прогноза. Первый этап  — прогноз, полученный с  помощью EN в  сочета-
нии с  EO. Второй этап  — результат, сформированный моделью G. Третий этап  — прогноз 
после статистической обработки. Полученные результаты оценки представлены в  таблице, 
в  которой приведены усреднённые значения метрик по  всем прогнозируемым кадрам. 
Дополнительно на рис. 3 отображено изменение значений метрик в зависимости от времен-
ного горизонта прогноза.

Рассчитанные метрики по данным тестовой выборки

Этап RMSE, K PCC SSIM PSNR FID

EN+EO 6,81 0,89 0,72 26,76 108,05
Генератор 6,07 0,92 0,77 28,06 66,73
HybridCloudCast 10,54 0,87 0,66 23,01 19,78

Рис. 3. Метрики качества краткосрочного прогноза по времени
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Проведённый анализ результатов позволил выявить определённые особенности поведе-
ния метрик и визуального качества прогнозных полей на разных этапах обработки. По коли-
чественным оценкам наиболее высокие значения метрик точности (RMSE и  PCC) демон-
стрирует детерминистическая часть модели, что говорит о  её способности обеспечивать 
устойчивое и  воспроизводимое приближение к  реальным наблюдениям. Вместе с  тем ана-
лиз по  метрике FID показывает, что в  целом модель HybridCloudCast обеспечивает форми-
рование визуально реалистичных изображений, наиболее приближенных к  оригинальным, 
при сохранении сопоставимой точности восстановления значений яркостной температуры 
в пикселях.

Рис. 4. Пример прогноза движения облачности для различных этапов обработки

Визуальный анализ прогнозных кадров на различных этапах обработки, пример которых 
представлен на рис. 4, показал, что выход детерминистической модели склонен к  сглажива-
нию мелкомасштабных деталей. Это связано с  характером используемых функций потерь, 
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ориентированных на минимизацию глобальных ошибок. В  то же время применение стати-
стической обработки позволило частично восстановить чёткость границ и пространственную 
детализацию, улучшив физическую корректность прогнозных изображений. Несмотря на 
возможное снижение численных метрик из-за увеличения локальной вариабельности такой 
подход обеспечивает более реалистичное представление облачности, что подтверждает целе-
сообразность применения гибридного подхода.

Следует отметить, что в  редких случаях статистическая постобработка может генери-
ровать ложные облачные структуры, т. е. участки с  повышенной яркостной температурой, 
отсутствующие в  детерминистическом прогнозе или слабо выраженные относительно под-
стилающей поверхности. Такие артефакты несистемны и наблюдаются на локальных участ-
ках площадью не  более 50 пикселей. Возникновение подобных ошибок связано с  тем, что 
модель стремится к  оптимальному восстановлению всей последовательности в  целом, а  не 
к  точному воспроизведению каждого кадра. Это позволяет улучшить структурную согласо-
ванность и визуальное качество прогноза, но при этом может приводить к локальным откло-
нениям. Кроме того, статистическая постобработка увеличивает контраст изображений, что 
улучшает интерпретируемость облачности, но может вносить искажения в яркостную темпе-
ратуру, завышая её интенсивность. Таким образом, для минимизации локальных артефактов 
и  сохранения физической корректности прогноза необходимы дальнейшие исследования 
используемой функции потерь.

В  дополнение к  визуальному анализу и  оценке по  тестовой выборке было проведено 
сравнение с существующими решениями по ключевым метрикам в конце трёхчасового про-
гноза. В  качестве первой модели для сравнения была выбрана SATcast, основанная на диф-
фузионном (статистическом) подходе. Она достигает значений RMSE около 10 K, а  PCC 
0,86. У предложенной модели HybridCloudCast соответствующие показатели составляют 12 K 
и  0,84. Данное различие в  точности может быть связано с  тем, что SATcast дополнительно 
использует данные численных моделей погоды в качестве входной информации, в то время 
как HybridCloudCast формирует прогноз только на основе последовательности спутниковых 
изображений яркостной температуры. Второй моделью сравнения стала DaYu, основанная 
на трансформерной архитектуре. Поскольку она является полностью детерминированной, 
её результаты целесообразно сопоставлять с  детерминистической частью HybridCloudCast 
(модель G). Разработчики DaYu в  своей работе указывают RMSE около 9 K и  PCC 0,91, 
тогда как для модели G эти показатели составляют 7 K и 0,89 соответственно, что свидетель-
ствует о более высокой точности приближения значений яркостной температуры к реальным 
наблюдениям. Таким образом, различия по  метрикам укладываются в  пределы статистиче-
ской погрешности, что подтверждает сопоставимую способность моделей отслеживать про-
странственно-временную динамику облачности. При этом HybridCloudCast обеспечивает 
формирование прогнозных изображений, приближенных к  реальным, используя в  качестве 
исходных данных только последовательности изображений яркостной температуры спутни-
кового прибора.

Стоит также отметить, что важным преимуществом разработанной модели является её 
временная дискретизация: прогноз формируется с  шагом в  10 мин, тогда как у  большин-
ства аналогов этот интервал составляет один час. Такое высокое временное разрешение даёт 
дополнительные возможности для оперативного анализа метеорологических процессов, осо-
бенно в условиях быстро меняющейся конвекции.

Ещё одно важное достоинство HybridCloudCast  — способность достаточно точно вос-
производить эволюцию малых конвективных ячеек, пример которых приведён на рис. 5 
(см.  с. 62). Такие образования представляют особый интерес с  практической точки зрения, 
поскольку часто ассоциируются с  возникновением локальных опасных погодных явлений. 
Анализ показал, что модель сохраняет адекватное описание таких конвективных процессов 
в течение первых двух часов прогноза. Далее наблюдается потеря интенсивности и усиление 
эффектов размытия облачных структур, что связано с накоплением ошибок в процессе экс-
траполяции и ограниченными способностями модели восстанавливать локальные нестацио-
нарные процессы на основе только спутниковых данных.
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Рис. 5. Пример прогноза движения малых конвективных ячеек

Заключение

В  работе представлены результаты исследования, в  рамках которого была разработана 
гибридная нейросетевая модель HybridCloudCast для наукастинга движения облачности 
в Азиатско-Тихоокеанском регионе на основе данных инфракрасного канала № 14 (11,2 мкм) 
прибора AHI, установленного на геостационарные КА серии Himawari. Ключевой особен-
ностью предложенного алгоритма является объединение детерминистического и  стати-
стического подходов: первый из них обеспечивает качественное предсказание динамики 
облачных систем за счёт применения физически обоснованной модели, тогда как второй, 
реализованный в  виде диффузионной сети, позволяет восстанавливать мелкомасштабные 
детали и повышает визуальное качество прогнозных изображений. Использование безоблач-
ного композита дополнительно улучшает точность прогноза за счёт учёта яркостных харак-
теристик подстилающей поверхности, что особенно важно при частичном рассеивании 
облачности.

Проведённый анализ показал, что HybridCloudCast демонстрирует конкурентоспособные 
результаты по сравнению с аналогичными алгоритмами, обеспечивая при этом более высокое 
временное разрешение. Модель способна формировать прогнозы с RMSE, не превышающей 
12 K, и  коэффициентом корреляции не  ниже 0,84. При этом было установлено, что макси-
мальная заблаговременность достаточно точного описания мелкомасштабных конвективных 
процессов в  среднем ограничена двумя часами, после чего наблюдается потеря контраста 
и детализации. Тем не менее, несмотря на необходимость дальнейшей оптимизации отдель-
ных частей нейросетевой модели, разработанный алгоритм может быть использован в  опе-
ративной метеорологии для анализа быстро меняющихся атмосферных процессов, особенно 
в условиях активной конвекции и ограниченной наземной инфраструктуры наблюдений.

Разработанная нейросетевая модель HybridCloudCast предназначена для наукастинга 
движения облачности на основе спутниковых данных, поступающих с  геостационарных 
КА серии Himawari. Однако она потенциально может быть адаптирована для работы с  дан-
ными других метеорологических спутников, включая российские КА серии «Электро-Л» 
и  «Арктика-М», оснащённые многоспектральными сканерами МСУ-ГС (Многозональное 
сканирующее устройство гидрометеорологического обеспечения). Для этого требуется фор-
мирование новых обучающих выборок, учитывающих специфику измерений МСУ-ГС.
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Nowcasting of cloud motion based on Himawari-8/9 satellite data 
using the HybridCloudCast hybrid neural network model
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The paper presents an algorithm for nowcasting cloud motion in the Asia-Pacific region using infra-
red satellite imagery from the geostationary Himawari-8/9 satellites. The algorithm is based on 
the  HybridCloudCast hybrid neural network model, developed by the authors, which combines the 
advantages of deterministic and statistical approaches in short-term forecasting. The deterministic 
component ensures accurate prediction of cloud evolution through the use of a physically grounded 
model, while the statistical component, implemented via a diffusion neural network, enhances 
the  detail and visual quality of forecasted images. HybridCloudCast uses input images contain-
ing brightness temperature values from channel 14 of the AHI instrument. In addition to satel-
lite imagery, the neural network model incorporates a cloud-free composite to improve forecast 
accuracy by accounting for the brightness characteristics of the underlying surface. The developed 
HybridCloudCast model generates short-term forecasts with a temporal resolution of 10 minutes and 
a spatial resolution of 2 km. Validation results show that the proposed algorithm is comparable in accu-
racy to existing methods, while offering higher temporal resolution. The model is capable of produc-
ing forecast images over a three-hour forecast horizon with a Root Mean Squared Error (RMSE) not 
exceeding 12 K and a correlation coefficient of at least 0.84.
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