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Рассмотрены особенности построения и  основные характеристики радиолокационного 
интерферометрического комплекса дистанционного зондирования Земли (ДЗЗ) на базе одно-
позиционного многопроходного космического радиолокатора с  синтезированной апертурой 
антенны (РСА), работающего в  режиме бокового обзора. Определены условия функциони-
рования и  требования к  информационному обеспечению системы дифференциальной раз-
ностно-фазовой обработки сигналов, полученных по  данным интерферометрического РСА 
(ИРСА). Проверена работоспособность предложенного подхода к построению комплекса для 
обнаружения вертикальных смещений поверхности Земли по  реальным радиоголограммам, 
созданным по открытым данным ДЗЗ. Приведены экспериментальные результаты по отобра-
жению вертикальных смещений подстилающей поверхности Земли посредством применения 
мультивременной разностно-фазовой обработки парных сигналов методом дифференциаль-
ной интерферометрии с  помощью однопозиционного многопроходного космического РСА, 
работающего в режиме бокового обзора. Представленный в работе радиолокационный метод 
дифференциальной интерферометрии с  помощью дифференциального ИРСА позволяет 
относительно детально и  точно измерять вертикальные смещения земной поверхности при 
мультивременной организации наблюдения.
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Введение

Радиолокационный мониторинг с  применением аэрокосмических комплексов с  установ-
ленными на борту радиолокаторами с  синтезированной апертурой антенны (РСА), в  част-
ности интерферометрическими (ИРСА), в  целях дистанционного зондирования Земли 
(ДЗЗ) активно развивается, открывая новые возможности многомерной обработки сигналов 
с  извлечением пространственно-разностно-фазовой информации, заключённой в  отражён-
ных от  Земли эхосигналах (Верба и  др., 2010; Волосюк, Кравченко, 2008; Школьный и  др., 
2008; Fornaro, Pascazio, 2014; Moreira et al., 2013; Ouchi, 2013).

Особенно важным практическим применением является обследование больших пло-
щадей с целью обнаружения термокарстовых подвижек грунтов и просадок в местах интен-
сивной добычи углеводородов, шахтной добычи полезных ископаемых, представляющих 
потенциальную опасность для трубопроводов, дорог, жилых и  промышленных объектов, 
что позволит предотвратить экологический ущерб от  нефтезагрязнений, сократить про-
изводственные затраты и  т. п. При подобной организации радионаблюдения даже смеще-
ния величиной в  доли длины волны передатчика РСА могут быть устойчиво обнаружены 
и идентифицированы.

Применение РСА многопроходного интерферометра с  одним космическим аппаратом 
(КА) на орбите для решения вышеуказанных задач с  целью получения дифференциальных 
оценок рельефа поверхности Земли может быть реализовано различным образом: а)  за счёт 



90� Современные проблемы ДЗЗ из космоса, 22(6), 2025

М. И. Бабокин и др.  Применение многопроходного однопозиционного РСА бокового обзора…

пролёта мимо объекта исследования при отклонённом луче антенны в  сторону от  нормали 
к линии пути (скошенное наблюдение); б) за счёт пролёта по орбите мимо объекта исследова-
ния при боковом обзоре, когда фазоразностные измерения происходят посредством относи-
тельного движения земной поверхности.

По  причине простоты и  реализуемости, особого внимания заслуживает второй вари-
ант интерферометрической космической системы: один носитель с  РСА бокового обзора 
формирует наблюдение в  разных сеансах, следующих в  пространстве со смещением вдоль 
линии пути, используя относительное движение земной поверхности. Затем применяется 
метод дифференциальной интерферометрии для получения оценок вертикальных смещений 
рельефа поверхности Земли в разных проходах.

Реализация первого варианта, т. е. построение схемы однопозиционного интерферометра 
со скошенным углом наблюдения, усложняет баллистическое управление при отвороте луча 
диаграммы направленности антенны и  дополнительно искажает сигнал, в  отличие от  вто-
рого варианта, т. е. при боковом обзоре за счёт относительного движения Земли, который 
не затрудняет обработку и не вносит дополнительных искажений. При этом разовая точность 
интерферометра при боковом обзоре ниже, но благодаря мультивременной обработке кратно 
повышается.

Цель настоящей работы заключается в  обосновании возможностей дифференциальных 
интерферометрических комплексов РСА для обнаружения и оценки вертикальных смещений 
поверхности Земли на базе космического многопроходного однопозиционного ИРСА, рабо-
тающего в режиме бокового мультивременного обзора (Бабокин, 2010; Бабокин и др., 2024, 
2025), потенциально обладающего относительно высокой детальностью, точностью, опера-
тивностью получения информации и простотой реализации.

Геометрическая модель наблюдения

Однопозиционный способ построения РСА дифференциального интерферометра (ДИРСА) 
реализуется при мультивременной многопроходной съёмке Земли с  применением одного 
КА с  РСА при боковом обзоре, когда комплексное изображение одного участка формиру-
ется несколько раз в каждом проходе в пределах одного рабочего участка орбиты. Излучение 
и приём сигналов на одном борту позволяет значительно снизить требования к навигацион-
ному обеспечению и синхронизации, что в случае применения ДИРСА имеет принципиаль-
ное значение.

Таким образом, КА с РСА на борту осуществляет наблюдение земной поверхности в зоне 
обзора, представленной в  виде участка поверхности с  начального момента времени t = 0 
до  момента окончания времени синтезирования t = TC (рис. 1, см.  с. 91, красная и  зелёная 
заливка). Возможна организация мультивременного наблюдения при оценке рельефа поверх-
ности Земли при смещённом времени отсчёта, т. е. от t = –TC до t = 0 (см. рис. 1, синяя и фио-
летовая заливка). При этом база однопозиционного интерферометра, необходимая для про-
ведения частных оценок рельефа поверхности Земли в  смежных сеансах наблюдения через 
время T0, организуется за счёт естественного пролёта носителя РСА от t = –TC до t = –T0 либо 
от t = 0 до t = T0 в зависимости от варианта реализации мультивременного наблюдения.

На рис. 1 приняты следующие условные обозначения: OXYZ  — прямоугольная подвиж-
ная путевая локальная система координат; RКА  — радиус орбиты КА в  начальный момент 
времени, RКА = RЗ + HКА; RЗ — радиус Земли на широте объекта наблюдения; HКА — высота 
орбиты КА над поверхностью Земли в  начальный момент времени; VКА  — линейная ско-
рость движения КА, VКА = ΩКАRКА; ΩКА  — угловая скорость движения КА; VЗЭ  — скорость 
вращения Земли на экваторе; VЗШ — скорость вращения поверхности Земли на широте объ-
екта наблюдения; ε0 — широта объекта наблюдения в начальный момент времени; γ0 — угол 
наклонения орбиты, определяемый между плоскостью экватора и  плоскостью орбиты КА 
в  начальный момент времени; χ0  — угол между вектором движения земной поверхности 
и  проекцией направления визирования РСА; β0  — угол скольжения в  начальный момент 
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времени; p0  — точечная цель с  координатами x0, y0, z0; α0  — азимут относительно точеч-
ной цели в  начальный момент времени; θ0  — угол между направлением на точечную цель 
и направлением в надир (угол падения) в начальный момент времени; r0 — наклонная даль-
ность до точечной цели в начальный момент времени; L — размер интервала синтезирования 
апертуры; B0 — размер базы интерферометра; ΔB — смещение носителя КА в парные сеансы 
мультивременного наблюдения при оценке рельефа поверхности Земли; ΔY  — смещение 
орбиты КА во втором проходе; ±Δz — вертикальное смещение поверхности Земли.

Рис. 1. Геометрия визирования ДИРСА бокового обзора

Представленная интерферометрическая схема последовательно реализуется во втором 
и  последующих проходах одного КА с  РСА при формировании ДИРСА. Смежные проходы 
через определённые промежутки времени (сутки, неделя, месяц, год) могут совпадать или 
отклоняться на значения по  высоте и  в направлении, поперечном движению. При этом на 
рис. 1 показано только поперечное смещение так, что второй проход осуществляется на той 
же высоте полёта КА, как и при первом проходе. Также предполагается, что во втором про-
ходе КА имеется вертикальное смещение поверхности Земли внутри локальной области раз-
мером в элемент или несколько элементов разрешения.

Подобный ДИРСА обладает одной важной особенностью: имеется возможность реализа-
ции мультивременной съёмки в одном проходе за счёт движения земной поверхности. То есть 
можно получать последовательно несколько интерферометрических измерений с  последу-
ющей их фазовой коррекцией и  комплексной обработкой. Это расширяет суммарную базу 
интерферометра без относительных ракурсных искажений и, соответственно, повышает точ-
ность фазоразностных измерений.
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Так, при одном проходе имеется k = 0, …, K–1 циклов формирования парных сигналов. 
В каждом цикле меняется угол отклонения синтезированного луча от нормали к линии пути 
согласно выражению:

∆
α

θ0
0 0

arcsin ;
sin

k
k k

k B
r

æ ö÷ç ÷ç ÷ç ÷ç ÷ç ÷ç ÷÷ç ÷ç ÷çè ø

=   0 0 0 ;k rr r v t» +  
θ β

θ

0 0
0

0

cos
;

sin

k

k

R
r

æ ö÷ç ÷ç ÷ç ÷çè ø
+

»
З

α θ β χ ε0 0 0 0 0 0sin cos cos cos ;r k kv V V=- + × ×КА ЗЭ   β θ0 0arccos 1 sin ,
H
R

æ ö÷ç ÷ç ÷ç ÷ç ÷ç ÷ç ÷÷ç ÷çè ø

é ù
ê ú= +ê ú
ê úë û

КА

З

где α0 ,k  0 ,kr  θ0
k   — азимутальный угол отклонения, дальность и  угол падения в  k-м  сеансе 

наблюдения; ΔB ≥ B0 — смещение базы интерферометра; 0
rv  — скорость изменения расстоя-

ния до  фазового центра антенны в  предположении реализации детального прожекторного 
режима наблюдения за поверхностью с одновременным формированием группы синтезиро-
ванных азимутальных лучей.

Некоторые особенности отражений от земной поверхности

Цифровой РСА формирует радиолокационное изображение в виде набора дискретных отсчё-
тов (пикселей), каждый из которых можно трактовать как среднее значение функции радио-
локационного рельефа ( , )e x y  в окрестности точки земной поверхности с координатами x, y 
на некоторой площадке размером ΔS, определяемой произведением разрешающей способно-
сти по азимуту Δx и горизонтальной дальности Δy. Шаг между дискретами внутри элементар-
ной площадки определяет степень детальности воспроизведения функции радиолокацион-
ного рельефа. Его удобно сравнивать с  потенциальной разрешающей способностью РСА 
по  соответствующим координатам. Естественно, что для исследования всех потенциальных 
возможностей радиолокационной системы следует выбирать δx ≤ Δx, δy ≤ Δy, а это означает, 
что земную поверхность целесообразно разделить на отдельные участки размером в элемент 
разрешения или меньше.

Для ровной мелкошероховатой поверхности отражённый сигнал от элемента разрешения 
определяется как сумма сигналов от находящихся на данной площадке независимых элемен-
тарных отражателей. В результате суммирования случайная зависимость от времени обуслов-
лена изменением геометрии системы фазового центра антенны — элемент разрешения вслед-
ствие движения носителя — и достаточно полно характеризуется двумя моментами распреде-
ления, в частности математическим ожиданием и корреляционной функцией:
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где me(t) — зависимость математического ожидания от времени; Re(t1, t2) — корреляционная 
функция в парные моменты времени; * — символ комплексного сопряжения.

Тогда при равномерном распределении случайных величин δxi и δyi внутри элемента раз-
решения имеем:
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где σ0 — удельная эффективная площадь отражения поверхности; λ — рабочая длина волны 
РСА; ax — вспомогательный множитель аргумента функции sinc в направлении азимута x.

Используя выражение нормированной корреляционной функции (1), можно определить 
время корреляции флуктуаций эхосигнала по уровню ~0,7:
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где Tk — время корреляции сигнала.
Интервал синтезирования TС жёстко связан с  величиной потенциальной разрешающей 

способности по  азимуту и  устанавливается известным выражением: ∆ λ θ0 0(4 sin ),xx r T v» С  
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поэтому при δ δ ∆ 2x y x= =  интервал корреляции временных флуктуаций отражённого сиг-
нала от элемента разрешения однородной диффузной поверхности, определённый на уровне 
~0,7, будет равен интервалу синтезирования.

Можем считать, что для подобной поверхности модуль и фаза элемента радиолокацион-
ного рельефа практически неизменны на интервале синтезирования, что для обнаружения 
и  измерения вертикальных смещений земной поверхности имеет принципиальное значе-
ние. При этом необходимо помнить, что компенсация миграций по дальности на интервале 
синтезирования должна производиться при РСА-обработке с  точностью в  доли элемента 
разрешения.

На практике интервал между смежными наблюдениями однопроходного интерферометра 
выбирается в четверть интервала синтезирования или менее, так что корреляция парных сиг-
налов обеспечивается на уровне выше 0,9. Кроме того, это обоснованное допущение значи-
тельно упрощает математическое описание сигналов, а  также синтез алгоритмов обработки 
парных сигналов.

Далее рассмотрим несколько объектов наблюдения, имеющих особое интерферометриче-
ское проявление:

1. Поверхность с  крупномасштабными неровностями, особенно с  крупными пологими 
неровностями (уклонами). Поверхность с  уклоном больше элемента разрешения обеспечи-
вает смещение центра фазового переотражения, а  корреляционные свойства сигнала меня-
ются в зависимости от величины и знака уклона поверхности:
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где μ  — уклон поверхности Земли в  направлении поперечному движению КА с  РСА; aμ  — 
вспомогательный множитель аргумента функции sinc в направлении уклона μ.

Из выражения (2) следует, что уклон поверхности может существенно повлиять на кор-
реляционные свойства сигнала, а следовательно, исказить фазоразностные измерения и даже 
привести к «фазовым» разрывам или неоднозначным фазовым скачкам.

2. Поверхность, где в элементе пространственного разрешения присутствует доминирую-
щий отражатель искусственного или естественного происхождения. Его присутствие может 
привести к смещению фазового центра переотражения, а корреляционные свойства сигнала 
будут определяться размерами этого доминирующего отражателя:
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где Δd — размеры доминирующего отражателя; ad — вспомогательный множитель аргумента 
функции sinc в направлении смещения d.

Если размеры отражателя много меньше разрешающей способности РСА, время корреля-
ции сигнала элемента разрешения значительно превысит интервал синтезирования. В зада-
чах интерферометрии это полезное свойство можно использовать для расширения диапазона 
фазометрического анализа, повысив тем самым точность и детальность измерения.

С  одной стороны, повышение интервала корреляции, увеличение базового параметра, 
следовательно, точности измерения; с  другой  — случайное фазовое отклонение, величина 
которого может значительно превышать величину фазовой однозначности. Решение этой 
проблемы открывает широкие перспективы развития дифференциальной интерферометрии.

3. Движение объекта или самой поверхности (горизонтальное смещение), когда появля-
ется зависимость от времени на интервале синтезирования, т. е. ( , , ),e x y t  точнее, перемеще-
ние объекта по одной или другой координате. Это провоцирует изменение значений x, y на 
интервале синтезирования. Дело в том, что подобное смещение фазового центра переотраже-
ния сигнала элемента разрешения приводит к  устойчивым фазовым отклонениям парных 
или межвитковых сигналов в ДИРСА. В данном случае эти фазовые отклонения воспринима-
ются как помеховые, и потребуются дополнительные усилия для их исключения из интерфе-
рометрического рассмотрения.
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Алгоритм оценки вертикальных смещений земной поверхности

В работе (Бабокин, 2010) детально представлен квазилинейный алгоритм оценки вертикаль-
ных смещений земной поверхности для случая однопроходного мультивременного интерфе-
рометра при скошенном обзоре. С помощью некоторых упрощений и изменений для боко-
вого обзора можно описать алгоритм в виде:

	
λ θ

∆
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где ∆̂k
mn  — оценка вертикальных смещений земной поверхности в mn-м элементе разрешения 

в k-м сеансе наблюдения; m, n — номер элемента разрешения по наклонной дальности и ази-
муту соответственно, m = 1, …, M, n = 1, …, N; 1ˆ ,k

mnd -  ˆk
mnd   — две комплексные оценки, полу-

ченные ДИРСА в двух смежных проходах одного КА; 1,0ˆ ,k
mne -  1,1ˆ ,k

mne -  ,0ˆ ,k
mne  ,1ˆk

mne  — комплексные 
оценки радиолокационного рельефа, полученные РСА-интерферометром в  двух смежных 
сеансах наблюдения k-го и (k–1)-го прохода КА.

Оценка вертикального смещения земной поверхности получается в результате трёх ком-
плексных сопряжений:

1) приведённых к  одному моменту времени оценок двух сеансов наблюдения первого 
прохода, в результате чего устраняется фаза переотражения элемента разрешения, среды рас-
пространения и набега фазы движения относительно ровной поверхности;

2) приведённых к  одному моменту времени оценок двух сеансов наблюдения второго 
прохода, в результате чего устраняется фаза переотражения элемента разрешения, среды рас-
пространения и набега фазы движения относительно ровной поверхности;

3) результатов первого и  второго комплексного сопряжения, в  результате чего остаётся 
разностно-фазовая информация, связанная с величиной вертикальных смещений поверхно-
сти Земли.

При этом среднеквадратическое отклонение ошибки оценки  (3) ДИРСА при условии 
значительного превышения отражённого земной поверхностью сигнала над шумами при-
ёмника, с учётом несовпадения условий наблюдения в смежных проходах и одновременном 
смещении поверхности внутри элемента разрешения, а  также при отсутствии дополнитель-
ной пространственной декорреляции из-за ошибок навигации, изменении отражающих 
свойств и т. п., определяется согласно выражениям:
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где σΔ  — среднеквадратическое отклонение ошибки оценки смещений поверхности Земли 
в  ДИРСА; q  — отношение сигнал/шум на выходе системы обработки сигналов РСА; Δre  — 
коэффициент корреляции дифференциальных парных сигналов в  ДИРСА, ∂y  — ошибка 
относительного позиционирования по земной дальности в смежных проходах; ay — вспомо-
гательный множитель аргумента функции sinc в направлении горизонтальной дальности y.

На рис. 2 (см.  с. 95) представлены зависимости  (4) для разного отношения сигнал/шум 
при следующих параметрах: β ≈ 40°, HКА ≈ 512 км, Δy ≈ 5 м; λ ≈ 0,09 м.

Из анализа зависимостей рис. 2 можно сделать следующие выводы: 1) потенциальная точ-
ность оценки вертикальных смещений земной поверхности однопозиционного двухпроход-
ного ДИРСА может достигать десятых долей длины волны излучения; 2) несовпадение орбит 
смежных проходов в  разумных пределах снижает потенциальную точность на десятки про-
центов; 3) ошибки навигации и позиционирования на уровне единичных долей (в %) от вели-
чины элемента разрешения приводят к  подобному дополнительному снижению точности 
относительно потенциальной.

При наличии уклона поверхности в пределах μ ≈ 10…20° с учётом его влияния на ошибку 
в проекции разрешающей способности по дальности как ∆ ∆ θ µ0sin( ),y y r¶ = - +  что эквива-
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лентно внесению дополнительной ошибки позиционирования в выражения (4), потенциаль-
ная точность оценки вертикальных смещений земной поверхности также ухудшится в преде-
лах 5–10 % относительно потенциальной. В данном случае следует считать это допустимым, 
однако дальнейшее увеличение уклона поверхности способно привести к разрушению фазо-
разностных измерений или к недопустимым ошибкам.

	 а	 б	 в

Рис. 2. Потенциальная точность оценки смещений поверхности Земли:  
а — при ΔY = ∂y = 0 м; б — при ΔY ≈ 1 км и ∂y = 0 м; в — при ΔY ≈ 1 км и ∂y = 0,5 м

В  заключение анализа рассмотрим влияние точечно-сосредоточенных объектов. Они 
обладают сильными корреляционными свойствами, но неточность относительного позицио-
нирования в  смежных проходах может привести к  ошибкам. При наличии доминирующего 
точечного отражателя, размеры которого значительно меньше элемента разрешения, ошибка 
относительного позиционирования приведёт к  дополнительной разностно-фазовой ошибке 
∂φ в ДИРСА, определяемой как ϕ π θ λ04 sin .y¶ » ¶

Так, при наличии ошибки позиционирования в  1 м вышеуказанный факт приведёт 
к ошибке порядка тысяч градусов, что естественно недопустимо. Лишь ошибка позициони-
рования в единицы миллиметров позволит обеспечить случайную фазовую ошибку в преде-
лах единиц градусов. Безусловно, для решения подобных задач необходимо использовать 
высокоточные навигационные системы, фазовые системы глобального и дифференциального 
(относительного) позиционирования, цифровые карты местности и применять дополнитель-
ные корреляционные и адаптивные методы интерферометрических измерений.

Экспериментальная проверка работоспособности

Проверка работоспособности алгоритмов оценивания смещений поверхности Земли с помо-
щью ДИРСА бокового обзора проводилась по  реальным сигналам космического комплекса 
РСА «Кондор-Э» (экспортный) (Турук и  др., 2017) при движении земной поверхности со 
скоростью VЗ ≈ 200 м/с на широте района наблюдения. Результаты обработки получены при 
обработке реальных радиоголограмм, записанных в  апреле (рис. 3, см.  с. 96) и  мае (рис. 4, 
см. с. 96) 2017 г.

На рис. 3а, б и  4а, б представлены фрагменты радиолокационных изображений (РЛИ), 
полученных с двух проходов РСА, а на рис. 3в и 4в — оценка ДИРСА вертикальных смещений 
поверхности Земли в кадре РЛИ в виде матрицы амплитуд, графическое отображение цвета 
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которых пропорционально их величине в диапазоне: белый цвет — неопределённое значение 
или отсутствие оценки (0 м); синий  — минимально определённое значение оценки (более 
0 м), жёлтый — максимальное значение оценки (не более 0,18 м).

  
	 а	 б	 в

Рис. 3. Результаты обработки реальных радиоголограмм: а — РЛИ от 04.04.2017;  
б — РЛИ от 20.04.2017; в — оценка вертикальных смещений в кадре РЛИ

  
	 а	 б	 в

Рис. 4. Результаты обработки реальных радиоголограмм: а — РЛИ от 14.05.2017;  
б — РЛИ от 30.05.2017; в — оценка вертикальных смещений в кадре РЛИ
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Сравнивая карты смещений земной поверхности, изображённых на рис. 3в и  4в, можно 
прийти к  выводу, что на склонах гор подвижность в  апреле 2017 г. была гораздо интенсив-
нее, чем в мае 2017 г. Уклоны, как мы выяснили, не подходят для измерения вертикальных 
смещений с  помощью ДИРСА, но в  данном случае повторяемость и  величина полученных 
оценок говорят об устойчивости наблюдаемых процессов на поверхности Земли. Кроме того, 
следует отметить участки поверхности, на которых подвижность в  мае 2017 г. значительно 
выше, чем в апреле 2017 г., что также объяснимо естественными природными процессами.

Заключение

На современном этапе перед интерферометрическими комплексами РСА обоснованно ста-
вится задача измерения вертикальных смещений земной поверхности. Использование много-
проходного однопозиционного способа построения интерферометрического РСА для опера-
тивного решения различных прикладных задач позволяет формировать разнообразные вари-
анты методов и алгоритмов.

В  настоящей работе обоснованы модель сигнала многопроходного однопозиционного 
РСА-интерферометра бокового обзора при движении Земли и применение алгоритмов ком-
плексной обработки интерферометрических измерений парных мультивременных сигналов, 
оценена точность измерения подвижек земной поверхности, а также проведена эксперимен-
тальная отработка и проверка алгоритмов с положительным результатом.

Представленные экспериментальные результаты показывают, что использование одно-
позиционного ДИРСА бокового обзора в сочетании с реализацией мультивременного наблю-
дения в  многопроходной схеме позволяют получить близкую к  потенциальной по  точности 
оценку смещений поверхности Земли.

Исследование выполнено за счёт гранта Российского научного фонда № 24-29-00507, 
https://rscf.ru/project/24-29-00507/.
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The article considers the design features and main characteristics of a radar interferometric complex 
for Earth remote sensing (ERS) based on a multi-pass monostatic satellite synthetic aperture radar 
(SAR) operating in the side-view mode. The operating conditions and requirements for information 
support for the system of differential phase-difference processing of signals obtained from interfero-
metric SAR (ISAR) data are determined. The operability of the proposed approach to constructing 
a complex for detecting vertical displacements of the Earth surface using real radio holograms obtained 
from open ERS data is verified. Experimental results are presented on displaying vertical displace-
ments of the underlying Earth surface by applying multi-time phase-difference processing of paired 
signals by the differential interferometry method using a multi-pass monostatic side-view satellite SAR. 
The method presented in this work for differential interferometry using differential ISAR allows rela-
tively detailed and accurate measuring of vertical displacements of the Earth surface with multi-tempo-
ral organization of observation.

Keywords: synthetic aperture radar, SAR, differential interferometric SAR, DISAR, phase-difference 
interferometry method, experimental results
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